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ABSTRACT

'The first analytical solution is given of the N panicle gravitational problem in

terms oforbits of pairs o f panicles together with a novel constraint equation. It is shown that

in general, the N particle lagrangian can be factorittd into a sum of twc particle lagrangiaru;

for whic h the solution is known. Each two particle orbit is inter -related by the conslTaint

equation. In the Newtonian limit each two partic le orb it is an ellipse, and more generally il is

a precessing conical section of great inheTent mathematical richness.
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1. INTRODUCTION 

In recent papers in this series on the applications of ECE theory { 1- 1 0} it has been 

shown that the precessing conical sections have great inherent mathematical richness on the 

two particle level in gravitational theory { 11}. In this paper the analysis is extended to the 

well known N particle problem in gravitation, in which one particle interacts with N - 1 

others. In Section 2 the first analytical solution of this problem is given by factorizing the 

lagrangian into N! I ((N- 2)! 2!) equations of two particle orbits. A novel constraint equation 

is deduced for planar orbits from the fundamental unit vector prope1iies of the planar 

cylindrical coordinate system. The constraint equation inter-relates the orbits of each pairs of 

particles, so the orbital motion of one particle depends on the other N - 1 particles. In the 

solar system such orbits appear to be stable, but even on the Newtonian level the orbits of the 

N particle problem are in general rich in mathematical structure. The additional consideration 

of precession as in the immediately preceding papers of this series results in a completely new 

subject of cosmology. In Section 3 some of the features of the new solution are graphed for 

illustration. This appears to be the first analytical solution of theN particle gravitational 

problem obtained in nearly four hundred years. 

2. ANALYTICAL SOLUTION 

Consider the gravitational interaction of three particles of masses m \ , fY\. 'l 

and fh.
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. This is referred to as "the three particle problem". Assume that the particles 

interact with the Hooke Newton potential { 11} . The lagrangian is therefore: 
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The radial coordinate of each particle is \ • , i = 1, 2, 3 and G is Newton's constant. Now - ., 
note that: 
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The three particle lagrangian has been factorized into the sum of three two particle 

lagrangians. Similarly, it can be shown that the four particle lagrangian factorizes into a sum 

of six two particle lagrangians. In general theN particle lagrangian factorizes into a sum of 

N! I ((N - 2)! 2!) two particle lagrangians. 

The lagrangians ( 3 ) to ( S ) can be written in the format (see notes 

accompanying UFT219 on www.aias.us): 

Here: 
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and the potential is: 

ln cylindrical polar coordinates in a plane: 
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Note carefully that does not depend on i, because it is defined by: 
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where e is a unit vector. In consequence: 
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and e does not have an index subscript i. For each particle the Euler Lagrange 

cqun tions are: 
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These can be combined into { 1 - 11 }: 

in wh ich the c d onserve angul ar momentum is: 
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and in which the force is: ~ (:n) 
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ThcreCore there arc three orbits: 
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!'o r each pa ir of pa rticles. In obtai ning these solutions the centres of mass of each pair of 

particles are defined by: 
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From Eqs. ( }3 ) th~ following constraint equation is obtained: 
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There are at least nine available equations in the nine unknowns: 

cl_l l rkJ J ~\ 1 f)~~ so the problem is soluble analytically, Q.E.D. 
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so we reach the important conclusion that theN particle problem is soluble analytically, using 

computer algebra to deal with tedious complexity. For precessing orbits each with an x factor 
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This method wi 11 produce an essentially infinite variety of previously unknown orbits. 
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Th e constraint equation is: 

Therefore: 

with R. \ given by Eq. ( 
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With computer algebra this procedure can be extended straightforwardly toN particles, thus 

providing the first analytical solution to the problem in nearly four hundred years. The only 

assumption is that the centres of mass of each pair can be defined in equations such as ( )o ) 

to ( 3:;) ), and this can always be done. 

3. GRAPHICAL ILLUSTRATIONS OF THE ANALYTICAL SOLUTION. 

Section by Dr. Horst Eckardt. 
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3 Graphical illustrations of the analytical solu-

tion

We �rst illustrate the solutions for non-precessing ellipses given by Eqs.(40-
42). The interlinking gives three ellipses for the radial coordinates of centers
of masses Ri as expected, see Fig. 1. For motion with precession, Eq.(44) has
to be used, resolved for each Ri. This gives the well known precessing ellipses,
Fig. 2, again for the centers of masses Ri. Please note that the coordinates Ri

are not identical to the mass coordinates ri.
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Figure 1: Ellipses Ri(θ) with parameters ε1 = ε2 = ε3 = 0.3, α1 = 1, α2 =
2, α3 = 3.

Figure 2: Precessing ellipses Ri(θ) with parameters same as for Fig. 1.
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