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Abstract

In the previous papers of this series, we have shown that the homoge-
neous current of ECE theory can be interpreted as an electric polarization.
In this paper, we continue this investigation, and show that it is a flow
of potentials. This further corroborates the experiments of Tesla. The
well-known wave equations are expanded to include conductivity terms
for electrical conductivity and for conductivity evoked by the flow of po-
tentials. This is not an ad-hoc assumption, but instead follows from ECE
theory. As a result, the Poynting vector contains additional terms de-
scribing what is known as the Heaviside flow, which is present outside of
electric conductors. The propagation velocity of electromagnetic waves
can take values smaller and even greater than its value in vacuo.

Keywords: ECE theory, ECE2 theory, electrodynamics, homogeneous current,
Tesla technology, potential area flux density, electromagnetic wave propagation.

1 Introduction

In Parts I and II of this article series [5,6], we have described the two currents of
ECE theory [1–4], the homogeneous and inhomogeneous current. The inhomo-
geneous current is the current appearing in the Maxwell-Heaviside equations as
an external quantity. In ECE theory, the homogeneous current is the symmetric
counterpart to the inhomogeneous current, and is normally assumed to be zero,
because it describes magnetic monopoles and their magnetic current densities.
However, new experimental results give strong indications that this type of cur-
rent really exists [7, 8]. According to the preceding two articles and [9], the
homogeneous current can be explained by electric polarization effects, and is
therefore an electric phenomenon rather than a magnetic one. In addition, we
have explained that Tesla’s experiments on wireless communication and energy
transfer can be put on a scientific basis by using this type of current.
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In this paper, we further develop the homogeneous current, and show that
it is a flow of a potential density. In ECE theory, the currents are not external
quantities, but instead consist of field terms. In particular, a conductivity term
can be derived, which will lead to expanded electromagnetic wave equations
for both types of currents, and the power density will contain a term formerly
unaccounted for. Furthermore, we will show that the propagation velocity of
the fields can be different from their value c in vacuo. This velocity can even
become greater than c, a surprising result that requires general relativity in
order to be understood. To explain this, we will apply m-theory [2], and one
resulting interpretation could be that energy is transferred from spacetime to
technical systems.

2 Field equations with homogeneous and inho-
mogeneous currents

2.1 Symmetrized Maxwell field equations

The original Maxwell-Heaviside equations in the vacuum read:

∇ ·B = 0, (1)

∂B

∂t
+ ∇×E = 0, (2)

∇ ·E =
ρe
ε0
, (3)

− 1

c2
∂E

∂t
+ ∇×B = µ0J, (4)

where E is the electric field, B is the magnetic induction, J is the electronic
current density vector, and ρe is the volume charge density. The equations are
the Gauss law, the Faraday law, the Coulomb law, and the Ampère-Maxwell
law.

Instead of using E and B, we can use an alternative notation with the
dielectric displacement D and the magnetic field H:

∇ ·H = 0, (5)

1

c2
∂H

∂t
+ ∇×D = 0, (6)

∇ ·D = ρe, (7)

−∂D
∂t

+ ∇×H = J. (8)

Notice that the factor 1/c2 now appears in the Faraday law instead of the
Ampère-Maxwell law.
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2.2 Symmetrized ECE field equations

The electromagnetic field equations of ECE theory are

∇ ·B = −µ0j
0, (9)

∂B

∂t
+ ∇×E = c µ0 j, (10)

∇ ·E =
ρ

ε0
, (11)

− 1

c2
∂E

∂t
+ ∇×B = µ0 J, (12)

with the homogeneous current density j and the homogeneous charge density j0.
According to Eqs. (24-27) in the first paper [5], the right sides can be written
as

−µ0j
0 = 2κ(Λ) ·B, (13)

c µ0 j = 2
(
cκ(Λ)0B− κ(Λ) ×E

)
, (14)

ρ

ε0
= −2κ ·E, (15)

µ0 J = 2

(
1

c
κ0E + κ×B

)
. (16)

The κ’s are wave numbers that are determined by the curvature and torsion of
spacetime.

Using the symmetrized Maxwell equations (5-8), we have to redefine j0 and
j in a way that satisfies the ECE equations (9-12). Equations (7-8) already have
the desired form. For equations (5-6), we have two options: either we use the E
and B fields as in (9-10), or we rewrite them using the alternative notation with
the dielectric displacement D and the magnetic field H. Each option will have
different physical dimensions of j0 and j. For the Gauss law, the first option
gives us

∇×B = ρp, (17)

where ρp has the units T/m = V s/m3. This is a volume density and compares
well with the electronic charge density, which has the units C/m3 = As/m3.
Selecting the second option would give us

∇×H = ρp, (18)

but we would obtain for ρp the units A/m2, which is an area current density and
is not meaningful here. Using the same arguments, we will define the Faraday
law of ECE theory by

∂B

∂t
+ ∇×E = V. (19)

The current density of the homogeneous current was renamed V, because it has
the units of V/m2, which is the same as V s/(m2s), and represents an area flux
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density of a potential. The ECE field equations now read:

∇ ·B = ρp, (20)

∂B

∂t
+ ∇×E = V, (21)

∇ ·D = ρe, (22)

−∂D
∂t

+ ∇×H = J. (23)

The factor of 1/c2 is no longer in front of any time derivative, and the Gauss
and Faraday laws are now fully equivalent to the Coulomb and Ampère-Maxwell
laws – except for a sign change in the time derivatives. These equations have
physically meaningful charge and current units, and both pairs are dual to
each other (see Table 1). The Gauss and Faraday laws now correspond to the
Coulomb and Ampère-Maxwell laws through the following mappings:

D←→ B, (24)

E←→ H, (25)

J←→ V, (26)

ρe ←→ ρp. (27)

As we can see from Table 1 (below), it follows that the units in the left and
right columns can be transformed into one another by simply replacing V with
A, and vice versa. The “magnetic” charge qp has units of Volt-seconds and is an
electric property rather than a magnetic one. The reverse holds for the electric
charge qe which contains the Ampère that appears in all magnetic units. Thus,
an electric charge has a magnetic character, even if this may seem quite unusual.

Electric Unit Magnetic Unit

µ0
V s
Am ε0

As
Vm

E V
m H A

m

B V s
m2 D As

m2

V V
m2 J A

m2

qp V s qe As

ρp
V s
m3 ρe

As
m3

η0
V
Am σ0

A
Vm

Table 1: Physical units of electric and magnetic quantities.
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From Eqs. (13-16), we obtain the the charge and current densitiy terms:

ρp = −2κ(Λ) ·B, (28)

V = 2
(
cκ(Λ)0B− κ(Λ) ×E

)
, (29)

ρe = −2ε0κ ·E, (30)

J =
2

µ0

(
1

c
κ0E + κ×B

)
. (31)

In ECE theory, all charge and current terms are expressed by fields. V and J
consist of a conductivity term and a Lorentz force term, as was already worked
out in paper [5].

2.3 Conductivity terms

In electrical engineering, Ohm’s law is used extensively. It is not included in the
Maxwell-Heaviside equations, but it has been recognized as an empirical law. It
connects the current density with the electric field strength by a conductivity
factor σ0:

J = σ0E. (32)

σ0 is a tensor in the most general case, but it will be handled as a scalar constant
here. As already stated in the first paper of this series [5], Ohm’s law is contained
in the ECE equations via a conductivity term. From Eq. (31), we can directly
see that the conductivity can be defined by

σ0 =
2ε0
µ0c

. (33)

If the Lorentz term in (31) is neglected, we immediately get Eq. (32), and then
substituting

D = ε0E (34)

into (32) gives us

J =
σ0

ε0
D. (35)

The quotient σ0/ε0 has the units of inverse seconds and is a frequency. We
denote this by

ωe =
σ0

ε0
, (36)

giving us

J = ωeD. (37)

ωe is the frequency of an inwardly spiralling electric induction.
An analogous effect can be found in the following way. We can define a

conductivity for the potential density V by an equation that is dual to Ohm’s
law:

V = η0H. (38)
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By comparing this equation with (29) we find that

η0 = 2cκ(Λ)0µ0, (39)

and by substituting

B = µ0H (40)

into (38), we find that

V =
η0

µ0
B. (41)

The quotient η0/µ0 has the units of a frequency, again. We denote this by

ωp =
η0

µ0
, (42)

leading to

V = ωpB. (43)

ωp is the frequency of an outwardly spiralling magnetic induction.

3 Poynting vector and power density

The potential density causes additional terms to appear in the Poynting vector,
terms that have been unaccounted for so far. The Poynting vector (with units
of W/m2) describes the flow of power per unit area and is defined by

S = E×H. (44)

In a given volume that contains electromagnetic fields, it counts the energy flow
through the boundaries. The field energy density in the volume is given by

u =
1

2
(E ·D + B ·H) (45)

(see section 5.3.1 of [2], or any electrodynamics textbook). The Poynting the-
orem states that the change in time of u and the divergence of S are related
by

∂u

∂t
+ ∇ · S = −J ·E. (46)

This is the conservation law for the field energy. The divergence term of S can
be rewritten by using the vector algebra rule,

∇ · (A×B) = (∇×A) ·B− (∇×B) ·A, (47)

to give us

∇ · S = (∇×E) ·H− (∇×H) ·E. (48)
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The terms ∇×E and ∇×H can be replaced with Eqs. (21) and (23):

∇×E = −∂B
∂t

+ V, (49)

∇×H =
∂D

∂t
+ J. (50)

Then, from (48), it follows that

∇ · S =

(
−∂B
∂t

+ V

)
·H−

(
∂D

∂t
+ J

)
·E. (51)

Inserting the conductivity equations

J = σ0E, (52)

V = η0H, (53)

then gives us

∇ · S =

(
−∂B
∂t

+ η0H

)
·H−

(
∂D

∂t
+ σ0E

)
·E, (54)

which in vacuo is

∇ · S =

(
−µ0

∂H

∂t
+ η0H

)
·H− ε0

(
∂E

∂t
+ σ0E

)
·E (55)

= −µ0
∂H

∂t
·H + η0H

2 − ε0
∂E

∂t
·E− σ0E

2.

The scalar product of the fields with their time derivatives can be rewritten via
the product rule,

∂A2

∂t
= 2

∂A

∂t
A, (56)

to give the final result:

∇ · S = −ε0
2

∂E2

∂t
− µ0

2

∂H2

∂t
− σ0E

2 + η0H
2. (57)

The first three terms are negative and effect a decrease of the energy flow,
while the fourth term η0H

2 is positive and increases the energy flow when the
magnetic field is increased. This is the long-sought Heaviside energy flow, which
describes an energy flow from spacetime.

Additional contributing factors to this energy flow become visible when elec-
trodynamics is placed on a broader basis, for example, when it is based on
Clifford algebra [9].

4 Wave equations

4.1 Wave equations from symmetric ECE field equations

The standard wave equations of electrodynamics are well known. They are found
by taking the time derivative and curl of the Faraday and Ampère-Maxwell laws
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in different combinations. We can also do so with the symmetric ECE field
equations (21) and (23). Taking the curl of (21) and the time derivative of (23)
leads us to

1

c2
∂

∂t
∇×H + ∇×∇×D = ε0∇×V, (58)

−∂
2D

∂t2
+
∂

∂t
∇×H =

∂J

∂t
. (59)

Then, using the identity

∇×∇×A = −∇2A + ∇(∇ ·A), (60)

and assuming that the fields are divergence-free gives us for the first equation:

1

c2
∂

∂t
∇×H−∇2D = ε0∇×V. (61)

From the second equation we obtain

∂

∂t
∇×H =

∂2D

∂t2
+
∂J

∂t
. (62)

By inserting this into Eq. (61), we find that

1

c2
∂D

∂t
−∇2D = −∂J

∂t
+ ε0∇×V. (63)

Under the assumption that J and V are predefined, this is an inhomogeneous
wave equation for D.

Similarly, we find a wave equation for H when we take the time derivative
of (21) and the curl of (23):

− 1

c2
∂2H

∂t2
+
∂

∂t
∇×D = ε0

∂V

∂t
, (64)

− ∂

∂t
∇×D + ∇×∇×H = ∇× J. (65)

The second equation can again be rewritten as

− ∂

∂t
∇×D−∇2H = ∇× J, (66)

and then inserting it into (64) gives us

1

c2
∂2H

∂t2
−∇2H = ∇× J + ε0

∂V

∂t
. (67)

This is an inhomogeneous wave equation for the H field. Both wave equations
(63) and (67) differ from standard theory by the fact that a potential density
V appears as an additional source term.

4.2 Wave equations with conductivity terms

In the following discussion we will replace J and V by their conductivity terms.
This will lead to homogeneous wave equations, in contrast to the former versions
where J and V represented inhomogeneous terms, which acted as sources. We
will proceed similarly to how we did in the preceding section.
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4.2.1 Wave equations for E and J

With the electric conductivity (37), J = ωeD, the Ampère-Maxwell law (23)
reads

∇×H =
∂D

∂t
+ ωeD = ε0

(
∂E

∂t
+ ωeE

)
. (68)

The Faraday law (21) with the potential density (43), V = ωpB, is

∇×E = −∂B
∂t

+ ωeB = −µ0

(
∂H

∂t
− ωpH

)
. (69)

Taking the curl of the last equation gives us

∇×∇×E = −µ0

(
∂

∂t
∇×H− ωp∇×H

)
. (70)

Inserting Eq. (68) then leads to

∇×∇×E = −µ0ε0

(
∂

∂t

(
∂E

∂t
+ ωeE

)
− ωp

(
∂E

∂t
+ ωeE

))
(71)

= − 1

c2

(
∂2E

∂t2
+ ωe

∂E

∂t
− ωp

(
∂E

∂t
+ ωeE

))
= − 1

c2

(
∂2E

∂t2
+ (ωe − ωp)

∂E

∂t
− ωpωeE

)
.

As before, we assume that the fields are divergenceless, so that

∇×∇×E = −∇2E. (72)

Eq. (71) can then be written in the form

1

c2

(
∂2E

∂t2
+ (ωe − ωp)

∂E

∂t
− ωpωeE

)
−∇2E = 0. (73)

This is a homogeneous partial differential equation of second order for E. If
there is no conductivity,

ωe = ωp = 0, (74)

then Eq. (73) becomes the standard wave equation of electromagnetic fields in
the vacuum:

1

c2
∂2E

∂t2
−∇2E = 0. (75)

We can also easily derive a wave equation for J. From (37) we have the
linear relation

E =
J

ω0ε0
, (76)

and because (73) is linear in E, it follows directly that

1

c2

(
∂2J

∂t2
+ (ωe − ωp)

∂J

∂t
− ωpωeJ

)
−∇2J = 0. (77)
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4.2.2 Wave equations for H and V

We now proceed in an analogous way to derive a wave equation for H. Using
the potential density (43), V = ωpB, the Faraday law (21) reads

∇×E = −∂B
∂t

+ ωpB = −µ0

(
∂H

∂t
− ωpH

)
. (78)

The Ampère-Maxwell law (23) with the current density (37), J = ωeD, is

∇×H =
∂D

∂t
+ ωeD = ε0

(
∂E

∂t
+ ωeE

)
. (79)

Taking the curl of the last equation gives us

∇×∇×H = ε0

(
∂

∂t
∇×E + ωe∇×E

)
. (80)

Inserting Eq. (78) then leads to

∇×∇×H = −µ0ε0

(
∂

∂t

(
∂H

∂t
− ωpH

)
+ ωe

(
∂H

∂t
− ωpH

))
(81)

= − 1

c2

(
∂2H

∂t2
− ωp

∂H

∂t
+ ωe

(
∂H

∂t
− ωpH

))
= − 1

c2

(
∂2H

∂t2
+ (ωe − ωp)

∂H

∂t
− ωpωeH

)
.

As before, we assume that the fields are divergenceless, so that

∇×∇×H = −∇2H. (82)

Eq. (81) can then be written in the form

1

c2

(
∂2H

∂t2
+ (ωe − ωp)

∂H

∂t
− ωpωeH

)
−∇2H = 0. (83)

This is a homogeneous partial differential equation of second order for H. If
there are no conductivities,

ωe = ωp = 0, (84)

then Eq. (83) becomes the standard wave equation of magnetic fields in the
vacuum:

1

c2
∂2H

∂t2
−∇2H = 0. (85)

We can now easily derive a wave equation for V. From (43) we have the
linear relation

V =
H

ωpµ0
, (86)

and because (83) is linear in H, it follows directly that

1

c2

(
∂2V

∂t2
+ (ωe − ωp)

∂V

∂t
− ωpωeV

)
−∇2V = 0. (87)
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5 Field velocities

5.1 General calculation

The expansion velocity of standard electromagnetic waves is the velocity of light
c in vacuo. In the following, we will show that the wave equations derived in
the preceding section can lead to velocities different from c.

We compute the expansion velocity in the following way. For simplicity,
we restrict ourselves to one dimension, X. Then, the time derivative of a field
component EX is

∂EX

∂t
=
∂EX

∂X

∂X

∂t
= vX

∂EX

∂X
. (88)

In special relativity, the speed vX is assumed to be constant. Consequently, the
second time derivative is

∂2EX

∂t2
= vX

∂

∂t

(
∂EX

∂X

)
= vX

∂X

∂t

∂

∂X

(
∂EX

∂X

)
= v2

X

∂2EX

∂X2
. (89)

Generalized to vector form, this equation reads

∂2E

∂t2
= v2 ∇2E (90)

or

∇2E =
1

v2

∂2E

∂t2
. (91)

After we insert this into the standard wave equation (75), the time derivatives
of E cancel out, and we obtain

v2 = c2 or v = c. (92)

We use the same procedure for determining the wave velocities of the ex-
tended wave equations (73, 77, 83, 87), which are all identical in structure.
Eq. (73) then becomes

1

c2

(
∂2E

∂t2
+ (ωe − ωp)

∂E

∂t
− ωpωeE

)
− 1

v2

∂2E

∂t2
= 0. (93)

Thus, that the equation has been reduced to a differential equation of only one
variable t, multiplying by c2v2 gives us

(
v2 − c2

) ∂2E

∂t2
+ v2

(
(ωe − ωp)

∂E

∂t
− ωpωeE

)
= 0. (94)

This is a quadratic equation in v and can be solved when certain model forms
of E are assumed. Furthermore, we can consider conductors and nonconductors
separately by choosing ωe and ωp appropriately.

To obtain a suitable equation for determining v, we transform this equation
into a form where only spatial derivatives of E appear. To avoid complications
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with vector algebra, we restrict consideration to a one-dimensional case E(r, t)
with space coordinate r. Then we have

∂E

∂t
= v

∂E

∂r
, (95)

∂2E

∂t2
= v2 ∂

2E

∂r2
, (96)

and Eq. (73) takes the form

1

c2

(
v2 ∂

2E

∂r2
+ v (ωe − ωp)

∂E

∂r
− ωpωeE

)
− ∂2E

∂r2
= 0 (97)

or

(v2 − c2)
∂2E

∂r2
+ v (ωe − ωp)

∂E

∂r
− ωpωeE = 0. (98)

This is a quadratic equation in v again. The same equation holds for any of
the fields E, H, J, of V. Therefore, we denote these field with F in the following
discussion.

We can make three different assumptions about the spatial structure of the
fields:

1. Exponentially decreasing:

F = F0e
−kr, (99)

2. Exponentially increasing:

F = F0e
kr, (100)

3. Oscillating:

F = F0e
−ikr, (101)

where F0 is an amplitude and k is a wave number. When we apply these
assumptions to Eq. (98), the amplitudes and exponential factors cancel out,
and for the three cases above we obtain the general solutions:

1. Exponentially decreasing:

v =
±
√

(ωe + ωh)2 + 4c2 k2 + ωe − ωh

2k
, (102)

2. Exponentially increasing:

v =
±
√

(ωe + ωh)2 + 4c2 k2 − ωe + ωh

2k
, (103)

3. Oscillating:

v =
±
√
−(ωe + ωh)2 + 4c2 k2 + i(ωe − ωh)

2k
. (104)
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To make the solutions more specific, we consider three cases for the frequen-
cies ωe and ωh that determine the conductivity behavior of the material in which
the waves propagate:

1. Conductor: this is defined by

ωe 6= 0, ωh = 0, (105)

and the corresponding wave vector in the velocity is

k =
ωe

c
. (106)

2. Non-conductor: similarly to the first case, we obtain

ωe = 0, ωh 6= 0, (107)

k =
ωh

c
. (108)

3. Equilibrium wave: in special cases, for example to describe quantum sys-
tems, both conductivities are equal:

ωe = ωh =: ω0, (109)

k =
ω0

c
. (110)

Once we specify all of these cases, the computer algebra code delivers results for
the velocities (102 - 104) that contain no constants other than c. The resulting
velocities are listed in Table 2, and the numerical values are also shown. We
assume that the negative values describe backward motion, and can be sorted
out. We obtain values that are smaller or even larger than c. The latter result
is discussed in more detail below. Interestingly, the exponential waves in the
conductor and non-conductor follow the golden ratio. For oscillating waves,
we obtain a real and an imaginary part. The imaginary part may indicate
oscillations [9].

v(conductor) v(non-conductor) v(equilibrium wave)

Exponential
(±
√

5+1)c
2

(±
√

5−1)c
2 ±

√
2c

decreasing −0.618c −1.618c −1.414c

1.618c 0.618c 1.414c

Exponential
(±
√

5−1)c
2

(±
√

5+1)c
2 ±

√
2c

increasing −1.618c −0.618c −1.414c

0.618c 1.618c 1.414c

Oscillating
(±
√

3+i)c
2

(±
√

3−i)c
2 0

(−0.866 + 0.5i)c (−0.866− 0.5i)c 0

(0.866 + 0.5i)c (0.866− 0.5i)c 0

Table 2: Expansion velocities of electromagnetic fields with conductivity terms.
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In the equilibrium case, the propagation velocity for decreasing and increas-
ing waves is identical, and greater than c. When we have an oscillation, the
velocity is zero, i.e., there is no wave propagation: it is a standing wave. This is
the case for quantum mechanical systems, for example, for electrons in atoms.

5.2 Interpretation of v > c

In special relativity, which is the basis of standard quantum mechanics, the
velocity of light in vacuo, c, is an absolute limit for any kind of motion. To
understand the breaking of this rule, we have to advance to general relativity.
In ECE theory, spacetime is identified with the flow of aether, which has local
variations in density. This density variation is described by m theory [2]. There
it was shown that general relativity, and in particular m theory, allows velocities
greater than c.

In m theory, a generalized relativistic γ factor is used, which has the form:

γ =

(
m(r)− v2

m(r)c2

)−1/2

. (111)

m(r) is a function that is dependent on the space coordinate r, and describes
the variation of the spacetime density. In the case of a spherically symmet-
ric spacetime, this is the radial coordinate. When γ is predefined, the above
equation can be solved for m(r). The solution is

m(r) =
±
√

4 v2

c2 γ
4 + 1 + 1

2γ2
. (112)

In the limit γ →∞,

1

γ
→ 0, (113)

and from Eq. (111) we obtain

m(r)→ ±v
c
, (114)

which is a constant function. The asymptotes of γ with respect to m(r) can be
seen in Fig. 1, where the values of v/c appearing in Table 1 have been used.
m(r) = 1 corresponds to the limit of special relativity.

Alternatively, v > c can be derived from an extension of special relativity.
As described in [9], the relativistic γ factor can be developed in the form

E =

(
1 +

v2

c2
+

(
v2

c2

)2

+

(
v2

c2

)3

+ . . .

)
E0, (115)

which is a series expansion for the transformation law E0 → E. This series is
convergent for v < c, but divergent for v ≥ c. In the latter case, this means that
energy is transferred from spacetime.

To summarize the main point of this section, velocities v > c are possible
in generally relativistic theory. The velocities that we obtained for the wave
equations with conductivity terms directly show the limits for the corresponding
m function.
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Figure 1: γ as a function of m(r) for different ratios v/c.

5.3 Experimental verification

Experiments by Aichmann and Nimtz [10] have shown that electromagnetic sig-
nals can propagate with superluminal velocity through barriers. This is not an
artifact of the phase velocity, which is known to be able to be greater than the
group velocity. Information is transferred by the group velocity, and measure-
ments show that the group velocity is greater than c. Thus, the researchers were
able to transfer large amounts of information with superluminal speed.

There is a continuing debate about whether these results are actually possi-
ble. When the quantum mechanical tunneling effect is considered, tunneling of
single particles takes place in zero time, and wave packets can tunnel through
a barrier much faster than they move in vacuo. This is not a break of causality
because the effect does not allow loops in the direction of time. The only conse-
quence is that for superluminal processes the ratio v/c in special relativity has
to be changed to v/c′, where c′ is the increased signal velocity.

Critics frequently argue that a luminal front velocity of wave fronts can
explain the experimental results. However, this is not possible since such a
concept requires mathematically exact jumps in amplitude, and therefore the
existence of an infinite frequency in the frequency spectrum, which would require
infinite energy [10].

As a final remark, we state that Aichmann and Nimtz are not the only ones
who have measured superluminal speed. In their paper, they reference other
experiments which have not been given much attention in the past.
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