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ABSTRACT

The well known radiative correction is amplified by spin connection resonance,
whereby the initially Coulombic potential in an easily ionized material is amplified to the
point where electrons are released for use in circuits, energy production and energy savings.
It is assumed that the radiative correction can be represented by an oscillating part of the fine
structure constant. The methods of Einstein Cartan Evans (ECE) field theory are used to
amplify the induced jitterbugging of the electron in each orbital that is the primary
characteristic of the radiative correction. The latter is observed in well known phenomena
such as the electron g factor, the Lamb shift and the Casimir effect. It is shown that the

initially small radiative correction can be amplified for practical implementation.

Keywords: Einstein Cartan Evans (ECE) field theory, radiative correction, spin connection

resonance amplification, new sources of energy.

PL KSS e .Szcu



1 INTRODUCTION

Recently the Einstein Cartan Evans (ECE) field theory has offered a generally
covariant unified field theory based on the principles of relativity - that physics is objective
and causal {1-11}. Relativity is the most precise theory of physics. Electrodynamics and
quantum mechanics have been forged together with gravitation and the other fundamental
force fields in one theoretical framework based on Cartan geometry {12}. With these
developments came the realization that the spin connection of space-time plays a central role
in electrodynamics, which in ECE is considered to be a theory of general relativity, not of
special relativity. It has been shown {11} that the spin connection can produce amplification
of gravitational effects, an amplification which may be used in counter-gravitational devices.
In the field of electrodynamics it has been shown {1-11} that the spin connection may be used
to amplify the repulsion between electrons in an atom or molecule to the point at which the
electrons are freed from the nucleus and may be used in circuits to produce power or save
power. Recently, it has been shown {1-11} that the Lamb shift may be explained within
experimental precision by using an average effect of the ubiquitous zero’th eigenstate of the
quantized electromagnetic field (“zero point energy”) to describe the well known {13,14}
radiative correction. The Lamb shift has been described in ECE theory in a manner that is
consistent with the description of the g factor of the electron in earlier work {1-11}.

In Section 2 the radiative correction in the hydrogen atom is considered to arise

from an oscillating component of the averaged radiative correction used in previous work {1-
11}. The Lamb shift is illustrated in atomic hydrogen for this type of radiative correction. The
charge density in each orbital is calculated for each orbital. In Section 3 these charge densities
are used in the generally covariant C01:110mb law of ECE theory and it is shown that the
radiative correction in each orbital of atomic hydrogen can be amplified by spin connection

fo
resonance to the point at which the electron breaks free fgfm the proton and may be used in a
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circuit to produce power. This process is known as “energy from space-time”. This paper
therefore identifies the driving term of the spin connection resonance mechanism as the
radiative correction. The latter causes zwitterbewegung, the well known {15} jitterbugging of
the electron in each orbital due to the ubiquitous, background, radiative correction. The latter
is due to the fact that in the quantized electromagnetic field surrounding the atom, there are
ever present and ever oscillating electric and magnetic fields. In the zero’th eigenstate of the
quantized, background, electromagnetic field these electric and magnetic fluctuations exist
when there are no photons {15} present, the photon being defined as the quantum of energy.
The electromagnetic potential due to these fluctuating electric and magnetic fields produces
well known phenomena such as the g factor of the electron and other particles, the Lamb
shift, and the Casimir effect. These are examples of the ways in which the radiative correction
is observed experimentally. No energy is required to manufacture the potential of the
radiative correction, which is therefore like an enormous natural reservoir of energy, one
which is ever present. The natural effect of the radiative correction is very small (about four
parts in ten million O?atomic hydrogen), but in ECE theory (generally covariant unified field
theory) it may be amplified by spin connection resonance {1-11}. In Section 4 the results of
Sections 2 and 3 are developed numerically, and in Section 5 a discussion is given of the type

of material most likely to release electrons through the theory of this paper. The hydrogen

atom is used as a model for future work based on density functional code in solids.

2. RADIATIVE CORRECTION IN THE HYDROGEN ATOM.
In previous work on the electron g factor and Lamb shift {1-11} the mean value of

the radiative correction was implemented as follows:

oz..y «b \'\~<°(> ) ’—‘<‘>

W



2

Lt
where g is the electron g factor, and where d is the fine structure constant. Eq. ( 4. ) was

used with the Dirac equation derived from the ECE wave equation, and Eq. ( Q ) was

used with the SchI;dinger equation. In order to model the jitterbugging of the electron it is
S 4
£ (e e) =

where ¥ is a characteristic wave-number of the jitterbugging and where r is the radial

assumed that:

coordinate {1-11}. The jitterbugging is therefore the initially small driving term of the spin
connection resonance (SCR) mechanism of previous work {1-11}. The hydrogen atom is
used to model the effect of Eq. (3) on each orbital.

To first order in d :
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and the Schr(;dinger equation of atomic hydrogen becomes:

_’T) “@(\-\—(o&(\«) th*) +'\/-(°\+ _ E+
Am AW ,__(5>

where
NG N (¢
GO e ;
\—\-fl_ée(

is the initially Coulombic attraction between the proton and electron. The effect of SCR is to

\ &

amplify this attraction into a strong repulsion which allows the electron to break free from the

proton. In Eq. ( S ), "\} is the wave-function and E is the total energy {15}. In Eq. ( é ), €
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is the charge on the proton (minus the charge on the electron), and (—o is the vacuum
permittivity in S.I. units {15}.

It is well known {15} that Eq. ( S ) can be developed into:
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where:

Here R is the radial wave-function of the hydrogen atom. The potential energy in Eq. ( 1 ) is
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where 1 is the angular momentum quantum number, m is the mass of the electron and’l'ﬁs the

]

reduced Planck constant. The positive term in Eq. ( a ) is the well known centrifugal
repulsion term in atomic hydrogen {15}. Using previous work {1-11} on the Lamb shift in

atomic hydrogen and helium, Eq. ( 1) is re-written as:
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Here r(vac) is a radial adjustment due to the radiative correction. It is different for each orbital

and can be calculated by subtracting Eq. ( 10) from Eq. ( 1 ), giving:
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The known hydrogenic P may be used in Eq. ( \‘A) to compute r(vac) using computer
algebra. This assumption is based on the experimental fact that the Lamb shift for atomic H
splits the 2s and 2p levels by about four parts in ten million, so the hydrogenic wave-
functions are only slightly affected. In previous work the experimentally measured Lamb shift
was explained in terms of an average r(vac) for the hydrogen and helium atoms. More
accurately, as in this paper, r(vac) oscillates from Eq. ( 3 ), i.e. the electron jitterbugs in
each orbital. The jitterbugging is the phenomenon used to build up the driving term of the
SCR mechanism.

To construct the driving term, the charge density /0 in each orbital must be
calculated, the driving term is then —-/0 / éo . In order to calculate /o , 1t is necessary to
calculate the probability J& finding the electron in a volume element AT at some point

( ( ) b ) cf} in spherical polar coordinates {15}. This probability is:
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The volume element is:
T OLsablodd.  — (ub

The probability of finding the electron in a spherical shell of thickness dr and radius r is the

sum over these probabilities {15} as e and move over the range:
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This sum is:
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However, the P function of Eq. ( | ) depends only on r, so the summed probability is:

P, = Wwe £ "(‘—’>

If we consider the probability to be determined by R itself, rather than P, then the summed

probability is: ~
£

The use of Eq. ( 1 )or ( \§ ) is a matter of choice. If we choose Eq. ( \ 8) and normalize

the summed probability to be unit-less by use of the Bohr radius a o {15} we obtain:
» \aftecldP o (\°\>
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This expression has assumed that R is hydrogenic, and unaffected by r(vac), so the latter
appears only in the pre-multiplying factor. This is an approximation, but in the hydrogen atom
an excellent approximation. In other materials it may not be as good an approximation, and
Eq. ( S ) would have to be solved directly with density functional code or another suitable

numerical method. Finally the charge density of each orbital is defined to be:
< T 0
/p = X Pa , hotm / 2 <

where V is an effective volume for each orbital. If a spherical volume is assumed:
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where r is the mean radius of each orbital.
e

3. SCR AMPLIFICATION MECHANISM.

This mechanism {1-11} is based on a simplified definition of the electric field in

g_-—(2+9—>‘f — (™)

where £~_3__ is the spin connection vector and % is the scalar potential. A simplified form

ECE theory:

of the Coulomb law of ECE theory is used. This happens to have the same mathematical form

as the Coulomb law of Maxwell Heaviside theory:
J ¢ = A .

The spin connection is assumed to be {1-11}:
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These equations give:
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This equation was transformed into an undamped oscillator equation:
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using the Euler transform {16}:

o = mg (eR) =07
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Eq. ( )l: ) was used to produce a Fourier analysis {1-11} for an assumed cosinal driving
term (right hand side of Eq. (lé)), and an equivalent circuit was designed. Resonant
amplification of % was shown to occur, and this phenomenon was studied in atomic
hydrogen {1-11}. It was shown that the SCR mechanism can ionize the hydrogen atom and
that the electron thus released could be used to produce electric power. In this section the
driving term of Eq. ( D\O ) is used in Eq. ( ls ) so that the overall process is shown to be
the SCR amplification of the radiative correction.

If the Euler transform method is used, the mathematical problem to be solved is

therefore as follows:
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However, Eq. ( )-S) can be solved directly by computer and this method is also considered

in Section 4.

4. NUMERICAL DEVELOPMENT AND CIRCUIT DESIGNS (by Horst Eckardt)

5. OPTIMUM MATERIALS (by Gareth J. Evans)
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4. NUMERICAL DEVELOPMENT AND CIRCUIT DESIGNS

In the following section we discuss results wich have been obtained by analytical and
numerical studies. First we compare the description of the radiative corrections with the Spin
Connection Resonance (SCR) mechanism derived in {17}.

4.1 Parameter studies

From Egs. (9,11,12) the impact of the fine structure constant a on hydrogenic spectra can be
described by the equation

K {'P (o)
3 Q:i*(‘/e°~\/e#>=0 (32)

with
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If we describe this potential energy difference by a single SCR potential @, we have to replace
(0
Vege ~Vege — VSC_R (35)
and define
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The sign was chosen so that a positive contribution of the potential energy is obtained for high
values of @. In this way we arrive at the expression

-t 4a_ a1
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(37)
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That this expression makes sense can be seen from considering the limits of vanishing or
infiite vacuum interaction, expressed by r(vac):
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In the maximum case the SCR potential cancels out the atomic effective potential energy so
that Eq. (10) becomes identiacal to that of a free particle. In general @ is orbital dependent as
was also found in {17} by numerical studies.

In Eq. (37) we have three parameters being of principal interest: @, r, and r(vac). In the first
three Figures we present the dependence of @ on r(vac) for fixed r values. Near to the atomic
core (Fig. 1, r=0.1; all quantitites given in atomic units) only the s orbitals (I1=0) leads to a
positive SRC potential, for other orbitals the interaction gives a decrease in potential energy
which counteracts a resonance effect. From our earlier studies {18} we know that the vacuum
interaction is much smaller then so that a positive SCR effect results. The same holds for a
radius in the valence region (r=1, Fig. 2). In the outer atomic region (r=5, Fig. 3) all
contributions become positive, but small. A surface plot ®(r(vac), r) for angular momentum
quantum number [=0 is presented in Fig. 4. Positive values of ® are generally obtained for
small radii r.

The Figures 5-7 show the dependence of r(vac) from @, again for three fixed radii r. There is a
pole in r(vac) which moves in direction of ®=0 for increasing r. Left-hand of the pole we have
positive r(vac) values for =0 which show some kind of resonance enhancement when
approaching the pole. From the surface plot (Fig. 8) we see that such an enhancement only
takes place in a small band of the r-@ plane.

4.2 Oscillatory r(vac)

The results so far were obtained for a non-oscillatory r(vac). Next we use the oscillatory
model (3) of the fine structure constant. According to Eq. (12) we have to solve

L T
777 % (Ve Vige ) P (3)

for the variable r(vac). Using computer algebra {19} this gives a complicated rational function
of order 3 inr. In (39) we replace furthermore

o= <of> (4+ Cor ((cr))

[ ¢o)

with

(o> = 0.0p2993

£3)

obtaining a solution of (39) which is dependent on a wave number k. For P(r) we choose the
undisturbed radial functions of the Hydrogen atom. Since P(r) depends on the quantum
number 1, this dependence propagates into the solution of (39). The result for three I values is

1
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graphed in Fig. 9. r(vac) for the 1s orbital strongly oscillates for large radii, but this is in a
region where the probability density is very small.

Having obtained the function r(vac) (x, r), we can proceed now with solving the resonace
equation (25). This equation has been transformed into an oscillator equation without
damping (26) as was originally described in {17}. The radial coordinate r has been
transformed to another coordinate R as given by (27). Therefore we must transform the
function r(vac)(r) to r(vac)(R) to be able to use it for the driving charge density p(R) at the
right-hand side. Unfortunately Eq. (27) is periodic in R and restricted in range. We can
construct a bijective mapping for the whole r range ba taking the real part of (27) in the form

K= Cos (K,.,R tl"h) [?2)
with an integer n. The inverse transformation then is
R:%o(a(oj(w,r)t}rm) (‘{3)

We use this equation to calculate the requested function r(vac)(R). Choosing n in a suitable
way, we obtain the behaviour as shown in Fig. 10 where R is continuously defined over the
full range of r. The oscillation of a leads to the behaviour shown in Fig. 11 for r(vac) of the 2s
orbital. The nonlinear transformation (43) infers the crookbacked form.

4.3 Resonance

Now we have all elements available to set up Equ. (28) and to construct a numerical solution.
By Egs. (19) and (20) we have

ple)= A (r+rluac) ™ Ry r) (b)

with a normalization factor A which is computed numerically; Ry(r) is the radial wave
function of Hydrogen. We transform p(r) to p(R) by defining a uniform R grid and back-
transforming it to an r grid according to (42). Since p(r) is given analytically, we can evaluate
it on the non-uniform r grid without problems. We can solve now

{'¢ = £(R -
TE{+K°¢ £(R) (¢s5)

£(r) %(;R) coc (16.R ) (46)

In order to obtained resonances in the solution, we had to make two modifications: The
relative strength of r(vac) in Eq. (44) had to be enhanced by a factor of 1000 and the driving
force (46) had to be enhanced by the same factor as well. While the latter is an uncritical
operation due to the unspecified normalization factor in (44), The enhancement of r(vac) can
be made plausible by the following: This calculation is restricted to a single atom where p(R)
is constrained to a few Bohr radii. In an atomic lattice of a solid, the excitation goes over
many atoms where resonance can enhance this in a nearly unbound spatial region. Therefore it

with
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may be justified to enlarge r(vac) in this model calculation. As an additional approximation
we identify the two wave numbers k and kg in Egs. (40) and (46) as we did in earlier SCR
calculations {17}.

The driving charge density thus enhanced is graphed in Fig. 12. The two maxima of the
atomic 2s distribution are still visible, strongly superimposed with oscillations. The total
driving force is shown in Fig. 13. The zero at R=3 is propagated from the zero in Fig. 12.
Finally we present the numerical solution ®(R) in Fig. 14. One can see that there is a
resonance for the second wave number k=5. Since f(R) is restricted in space, the resonance
does not grow further outside the “definition volume”. This behaviour reflects the above
discussion about the restrictions of the model.

The resonance behaviour is clearly seen from the resonance diagram, Fig. 15. The maximum
of the amplitude taken over 15 wave lengths is plotted. The main peak is at half the frequency
of a pure cosine driving force cos(xo r), and there are several secondary maxima visible. The
structure is somewhat richer than for the earlier SCR calculation {17}, but has the feature of
the halved resonance frequency in common with it.

4.4 Relation to Circuits and SCR applications

The resonance equation (45/46) can technically be realized by an equivalent circuit as already
described in detail in {17}. The driving force has to be provided electrically. This force is
characterized by its Fourier spectrum. However, we do not have a continuously periodic
function as in {17} since one single atom which is considered in our model is not a periodic
structure. Therefore we choose the usual proceeding in such cases: we cut the function f(R) at
an appropriate radius (here R=15) and assume periodicity with a wavelength of A=15. For
each given k we obtain separate functions f(R, «), i.e. different Fourier spectra for each «
value. These are shown in Fig. 16 for the three x values investigated. The structures are
similar but shifted in frequency. This means that there is a common pattern in the structure of
the driving force. This could be like a “fingerprint” for a certain atomic structure.

Another type of SCR devices are the various types of Bedini motors, or more precisely,
motor-generators {20}. According to the block diagram of Fig. 17, they consist of a motor
part, a generator part, and a control circuit. The generator part which takes up the potential
from spacetime is a series resonance circuit as can be seen from the diagram. The motor and
the control part are there to generate a suitable form of the driving force and are coupled
inductively. We must restrict comparison to this logical level. It should become clear that the
functioning of the Bedini motor-generator is based on the principle that we have derived from
the equivalent circuit. A more direct application of the mechanisms can take place in solid
state chemistry as is discussed in the next section.

>
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Fig. 4. Surface plot ®(r(vac), r) for angular momentum quantum number 1=0.
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Fig. 10. Radius back transformation r(R).
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Fig. 11. Oscillating vacuum radius r(vac) (R) of the 2s orbital for three wave numbers (2.5, 5,
10).
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Fig. 12. charge density of driving charge density p(R) equation for three wave numbers (2.5,
5, 10).
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Fig. 13. Driving force f(R) for for three wave numbers (2.5, 5, 10).
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Solution Phi(R)
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Fig. 14. Solution of ®(R) of Euler transformed equation for three wave numbers for three
wave numbers (2.5, 5, 10).
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Resonance Diagram
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Fig. 15. Resonance diagram, max. amplitude after 15 wavelengths A=2n/k.
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Fig. 16. Fourier transform of driving force for three wave numbers (2.5, 5, 10).
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