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ABSTRACT

The simultaneous interaction of three fundamental fields is illustrated in
Einstein Cartan Evans (ECE) theory with reference to the effect of gravitation on the inverse
Faraday effect. The three-field interaction in this case is that of the fermionic, electromagnetic
and gravitational fields. The interaction of the first two is developed in a well defined semi-
classical approximation of the ECE wave equation and the effect of gravitation incorporated
through the index reduced canonical energy momentum density T. The exercise is repeated
using the ECE wave equations and a general rule developed for the effect of gravitation on

the fermionic, electromagnetic weak and strong fields.

Keywords: Einstein Cartan Evans (ECE) field theory; interaction of three fields in ECE
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1.INTRODUCTION

Recently a generally covariant unified field theory has been developed based on
the extension of Riemann geometry with the well known Cartan torsion {1-12}. This theory
is known as Einstein Cartan Evans (ECE) unified field theory and produces a self consistent
framework for the investigation of field interaction in various approximations. In this paper
the ECE theory is illustrated with the interaction of three fields simultaneously. In Section 2
the interaction of the fermionic and electromagnetic fields is developed in a well defined limit
semi-classical limit of the ECE wave equation, and a rule introduced for the effect of
gravitation on the interacting fermionic and electromagnetic fields. In Section 3 the exercise
is repeated with the ECE field equations and a general method developed for the interaction

of gravitation on the fermionic, electromagnetic, weak and strong fields.

2. WAVE EQUATION METHOD.

In general the interaction of n fundamental fields can be developed with the ECE
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where the Cartan tetrad {14} 5\1 is the eigenfunction, and where the eigenvalues are
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wave equation:
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defined by:

where R is a well defined scalar curvature {1-12}, k is Einstein’s constant and where T is the
index reduced or scalar canonical energy momentum density. In general the interaction of

fields is described by adding terms in T as first inferred by Einstein {13}. This procedure
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needs a numerical solution in general, here the method is simplified and illustrated with
respect to the inverse Faraday effect for an ensemble of electrons {15}. A semi classical
approximation is used based on the relativistic Hamilton Jacobi equation, which may be
solved analytically {1-12} for the inverse Faraday effect in an electron or ensemble of N non-
interacting electrons.

When there is no gravitational effect, Eq. (1) reduces to the Dirac equation for a

fermion {1-12} as follows:

Here m is the mass of the fermion (in this case an electron),‘Kis the reduced Planck constant

and ¢ the vacuum speed of light. The Compton wavelength of the electron is:
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Using the quantum equivalence rule {16}:
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the Dirac equation becomes the Einstein equation of special relativity:
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The interaction of the electron with the classical electromagnetic field is given by the minimal

prescription {16}:
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and using Eq. ( K ), the Einstein equation ( é ) becomes the special relativistic Hamilton

Jacobi equation:
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This has analytical solutions for one electron {1-12} or for N non-interacting electrons. These
solutions are reproduced for ease of reference as follows. The circularly polarized
electromagnetic field induces orbital angular momentum in the electron, this is a relativistic
process. In the ultra relativistic limit the electron radiates synchrotron radiation in well
defined {17} narrow beams, such as those observed from a pulsar.
The orbital linear velocity from Eq. ( g )is {1-12} divided into X and Y
components for a circularly polarized field applied in the Z axis. The field has a spin field:
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and its angular frequency is (& . The radial vectors defining the electron orbit are rx and

r)’ . The analytical solution of Eq. ( g ) was first given by Landau and Lifshitz { \Q }
and applied to he inverse Faraday effect by Evans and Vigier { \ A }. The radial vectors

from Eq. ( g ) are:
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and the orbital linear velocities are:
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Here X is a special relativistic corfection defined by:
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The angular frequency imparted to the electron is defined by:
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The electronic angular momentum is: ( 3
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and the electronic orbital displacement in radians is:
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where T is a well defined interval of time. In well defined approximations the graph of 9
against ¥ is a hyperbolic spiral or a combination of spirals {1-12}.

In the low frequency (radio freq‘guncy) limit:
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the angular momentum imparted to the electron by the electromagnetic field is approxi?mted

by: | . (3-> 1 B (33 »(\-7
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and the angular displacement is approximated by:



and the angular displacement by:
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The angular frequency of the electromagnetic field is by definition:

e 3O (3D

c

so it is seen that the graph of displacement against r in the laser limit is a hyperbolic spiral:
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In the low frequency limit ( \(7 ) the angular displacement depends on the mass m, but in the
high frequency limit ( \AA ) it does not.

The effect of gravitation on these results is now introduced by the rule:
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so the mass m is replaced wherever it occurs by:
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It can be seen that this is a rule of general relativity unified with wave (or quantum)
mechanics because'h/ appears as well as T. In the standard model this is not possible because
its gravitational sector is generally covariant but its electromagnetic sector is only Lorentz
covariant. In ECE theory {1-12} all sectors are generally covariant. The standard model is
internally inconsistent, whereas ECE 1is internally consistent. In using this rule as follows T is
left as a parameter to be determined by comparison with data, however it can be calculated
from first principles and Eq. ( ﬁ_ ) used directly. However in this case Eq. ( ﬂ_) is
analytically insoluble.

The rule ( )‘S) is illustrated by reference to the resonance frequency of the

inverse Faraday effect {1-12}, i.e. the radiatively induced fermion resonance (RFR)
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From Eq. ( 1" ) the RFR frequency in hertz in the low frequency approximation ( \é ) is:
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where I is the power density (watts per square meter) of the electromagnetic field and where
/A o is the S.I. vacuum permeability. The effect of gravitation on RFR in the

approximations used in this section is therefore to shift the RFR frequency to:
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This frequency can be measured to high accuracy using contemporary instrumentation and so
it may be possible to measure the effect of gravitation on it. It may be concluded that
synchrotron and pulsar radiation are effected by gravitation. Pulsar radiation comes from an
object of very high gravity, so its characteristics are modified by gravity. Pulsar radiation is
synchrotron radiation, and the latter is calculated in the ultra relativistic limit when the
angular frequency SZ is very large. In the case of the inverse Faraday effect the electron is
spun by a circularly polarized electromagnetic field. In a conventional synchrotron it is spun
by other electromagnetic devices. In both cases however an ultra relativistic electron will
radiate and this radiation is affected by gravity. This illustrates the predictive abilities of ECE

theory with a well defined semi-classical model ( 57 ).



