APPENDIX : ANALYTICAL SOLUTIONS OF THE UNDAMPED OSCILLATOR.

Consider the basic undamped oscillator equation (see text):
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If j vl Satisfies the Dirichlet condition, i.¢. is single valued and continuous in an interval

suchas W < 3 (\f Q> é T it can be expanded in a Fourier series:
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These integrals can be computed straightforwardly to any required precision in any interval,
the latter is not necessarily constrained to T <j ( 1% ¢ R) N W . the latter is used for

illustration. Therefore eq. (A1) becomes:
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Assume a solution of the type:
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Substituting Eq. ( [’\4 )in Eq. ( {—\S) and comparing terms by term:
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In general these resonances occur at:
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and:
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This analysis can be repeated straightforwardly for any driving term:
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A constrained particular integral of Eq. ( A\ ) can be obtained for any driving

function j (KR> In this case the undamped oscillator is:
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Assume a solution of the type: ‘R
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subject to the constraint: ( {,\ \S>
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So the particular integral is:



subject to the constraint:
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A solution of Eq. ( Q\G\) is the general resonance condition:
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To explain the notation in Eq. ( A)") consider for example a cosine driving term:
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Then the notation means:
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The resonance condition ( A).o) then becomes:
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to which there is an infinite number of solutions. For a driving term:
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the resonance condition 1s:
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and there are two solutions at
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For a driving term:
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the resonance equation is:

and there are again an infinite number of solutions.



