Consider the basic undamped oscillator equation (see text):

the basic undamped oscillator equation (see text):
$$\frac{\lambda^2 d}{dR^2} + \kappa^2 d = \rho(0) \int_{C_0}^{\infty} \int_{C}^{\infty} (\kappa R) - (AI)$$

where:

$$f(\kappa R) = e^{2i\kappa R} \cos(e^{i\kappa R}) - (A2)$$

If  $\mathcal{L}(\mathcal{R})$  Satisfies the Dirichlet condition, i.e. is single valued and continuous in an interval such as  $\mathcal{R}(\mathcal{L}(\mathcal{R}))$  it can be expanded in a Fourier series:

where:

$$a_{o} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\kappa R) d(\kappa R)$$

$$a_{d} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\kappa R) \cos(d\kappa R) A(\kappa R)$$

$$b_{d} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\kappa R) \sin(d\kappa R) d(\kappa R)$$

These integrals can be computed straightforwardly to any required precision in any interval, the latter is not necessarily constrained to  $\pi \left( \int (\kappa R) (\pi) \right)$ , the latter is used for illustration. Therefore eq. (A1) becomes:

$$\frac{\lambda^{2}\phi}{\lambda R^{2}} + \kappa^{2}R = \frac{\rho(0)}{\xi} \left( \frac{a_{0}}{2} + a_{1} \cos(\kappa R) + a_{2} \cos(\lambda \kappa R) \right) + \frac{1}{2} \sin(\lambda \kappa R) + \frac{1}{2} \sin(\lambda \kappa$$

Assume a solution of the type:  

$$\phi = \rho(0) \left(A_0 a_0 + A_1 a_1 (os(\kappa R) + A_2 a_2) (os(2\kappa R) + A_3 a_4) (os(2\kappa R)$$

Substituting Eq. ( A6 ) in Eq. ( A5) and comparing terms by term:

$$K^{2}A_{0}\frac{a_{0}}{2} = \frac{a_{0}}{2}$$
 $A_{1}K^{2}(1-a_{1})\cos(\kappa R) = \cos(\kappa R)$ 
 $A_{2}K^{2}(1-4a_{2})\cos(\kappa R) = \cos(\kappa R)$ 
 $A_{3}K^{2}(1-4a_{3})\cos(\kappa R) = \sin(\kappa R)$ 
 $A_{3}K^{2}(1-\kappa^{2}b_{n})$ 
 $A_{1}K^{2}(1-\kappa^{2}b_{n})$ 
 $A_{2}K^{2}(1-\kappa^{2}b_{n})$ 
 $A_{3}K^{2}(1-\kappa^{2}b_{n})$ 

Thus:  

$$\phi = \frac{\rho(0)}{f_0 \kappa^2} \left( \frac{a_0}{2} + \frac{\cos(\kappa R)}{(1-a_1)} + \frac{\cos(2\kappa R)}{(1-4a_2)} + \cdots \right) - (A8)$$

$$+ \frac{\sin(\kappa R)}{(1-b_1)} + \frac{\sin(2\kappa R)}{(1-4b_2)} + \cdots$$

Infinite resonances occur at:

$$a_n = 1/n^2, n = 1, ..., m, \frac{1}{n^2} - (Aq)$$
 $b_n = 1/n^2, n = 1, ..., m.$ 

In general these resonances occur at:

Real 
$$\left(\frac{1}{\pi}\right)^{\pi} 2i \kappa R \left(os\left(e^{i\kappa R}\right) \left(os\left(\kappa R\right) d(\kappa R)\right) = \frac{1}{\kappa^2}$$

and:

This analysis can be repeated straightforwardly for any driving term:

$$\begin{cases}
(\kappa R) = e^{2i\kappa R} \int_{1}^{\infty} (e^{i\kappa R}) \cdot - (A12)
\end{cases}$$

A constrained particular integral of Eq. ( A) can be obtained for any driving

function 
$$\int (\kappa R)$$
. In this case the undamped oscillator is:
$$\frac{\partial^2 \phi}{\partial R^2} + \kappa^2 \phi = \rho(0) + \frac{\partial^2 \phi}{\partial R} = \frac{\partial^2 \phi}{\partial R}$$

Assume a solution of the type:

wition of the type:
$$\phi = A \rho(0) e^{2i\kappa R} \int (e^{i\kappa R}) - (All_{+})$$

subject to the constraint:

Then:

and:

So the particular integral is:

subject to the constraint:

$$\frac{d\phi}{ds} = 0. - (A19)$$

A solution of Eq. (  $\mathbf{A}$  \mathbb{N}) is the general resonance condition:

To explain the notation in Eq. ( $\Lambda$ ) consider for example a cosine driving term:

Then the notation means:

$$\int_{0}^{1} dx = -\sin x, \quad \int_{0}^{1} dx = (\cos x) - (A22)$$

The resonance condition ( $A^{\circ}$ ) then becomes:

$$t_{an x} = 3 - x^{2} - (A23)$$

to which there is an infinite number of solutions. For a driving term:

$$\frac{1}{3} = e^{-x}, \frac{1}{3} = -e^{-x}, \frac{1}{3} = e^{-x} - (A34)$$

the resonance condition is:

$$x^2 - 5x + 3 = 0 - (A25)$$

and there are two solutions at

$$x = 4.3028$$
, 0.6972. — (A26)

For a driving term:

the resonance equation is:

$$tanx = \frac{3 + 5x}{x(5-6x)}$$
 (A28)

and there are again an infinite number of solutions.