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Abstract—The interaction of intense electromagnetic radiation with molecular matter is considered in terms of
group theoretical statistical mechanics (gtsm). Field induced dipole moments are expanded in a double Taylor
series in powers of the electric and magnetic field components multiplied by complex molecular property
tensors (susceptibilities). The third principle of gtsm leads to several new non-linear optical effects, together
with a symmetry classification of known effects. One new effect is detailed in terms of the Maxwell equation,
and an estimate made of its order of magnitude.

INTRODUCTION

Group theoretical statistical mechanics (gtsm) applies group theory to statistical mech-
anics, and rests on three principles [1-5]. The first is the Neumann/Curie principle
restated in terms of contemporary group theory; the second principle applies this to the
molecule fixed frame, using molecular point group theory; and the third deals with the
effect of applied fields. Although firmly rooted in well-known point group theory, gtsm
used in combination with computer simulation has recently produced several useful
insights. They have defined the role of asymmetric cross correlation functions (ccfs) in
microrheology [6—8]; anticipated shear induced depolarized light scattering [9]; thermal
conductivity due to combined shear and elongational flow [10]; the nature of ccfs in
liquid crystals [11, 12]; and have been applied [13] to molecule fixed ccfs from a variety of
computer simulations of the dynamics of molecules [14-16].

In this paper the third principle is used to anticipate and classify new non-linear
birefringence phenomena produced by the interaction of intense electromagnetic radia-
tion with molecular ensembles. The field induced electric and magnetic dipole moments
are expanded in terms of molecular property tensors such as the polarizability and
hyperpolarizability multiplied term by term into appropriate field tensors. The third
principle of gtsm in this case asserts that the symmetry of the complete product of field
tensor and molecular property tensor is imparted in general to new ensemblie average.

. The symmetry of any one of these averages is part of this complete product. Thus, the
symmetry of an induced molecular electric dipole moment, for example, is produced by
the polar vector part of the complete product of molecular polarizability and electric field
(E:); hyperpolarizability and E.E; tensor and so on. Systematic application of the third
principle allows a classification of the various birefringence phenomena produced by the
electric and magnetic components of the electromagnetic field. These include the non-
linear Faraday effect, the inverse Faraday effect [17], magneto-chiral birefringence [18-
20], (the Wagniere/Meier effect), its inverse (the Wagniere effect [21]), electric and
magnetic rectification [22], and several new higher order effects given here for the first
time. Barron’s rule [23] is used to classify the chirality of the effect in each case.

2. THE THREE PRINCIPLES

Principle 1. The Neumann/Curie Principle

The thermodynamic ensemble average (4,8,Cy . . .) over the product A,B,C; . . . exists
in frame (X, Y, Z) if the product of symmetry representations I'(A)I'(B)I'(Cy). ..
contains at least once the totally symmetric representation (tsr) of the point group R,(3)
of achiral ensembles or R(3) of chiral ensembles.
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Principle 2

This ensemble average exists in the molecule fixed frame (x, y, z) if the product of
symmetry representations in the molecular point group contains that point group’s tsr at
least once.

Principle 3

If an external field of force is applied to a molecular ensemble, new ensemble averages
are formed which include the symmetry of the applied field.

3. SoME BACKGROUND SYMMETRY CONCEPTS

In order to apply these three principles it is necessary to define the point group
symmetry of molecular ensembles, those of molecular dynamical variables in these
ensembles, and finally the symmetry of applied fields in terms of the irreducible
representations of these point groups. In this context the point group of achiral
molecules is distinguished carefully from that of chiral (optically active) molecules.

The point group R,(3) is the group of all rotations and reflections of an isotropic
ensemble of achiral molecules. The point group R(3) is that of all possible rotations in an
ensemble of structurally chiral molecules. Reflection in this case is not a valid symmetry
operation because it generates a different molecule, the opposite enantiomer.

It is well known from standard point group theory that all valid symmetry operations
of a point group can be expressed in terms of irreducible representations. For the groups
R;(3) and R(3) these are the well known D representations [1-12] of the
Clebsch—Gordan Theorem. In R,(3) they are

©  p (n).
DO, D, ..., DY
0).
tsr = D{";

0 1
DO, DO ... DY,

respectively, even (g) and odd (u) to the parity inversion operator P, which inverts
coordinates in the laboratory frame,

P (X, Y, Z2)y»(-X, ~Y, —2).

The superscripts denote the order of spherical harmonics. Accordingly, the symmetry
representation of the ensemble (Gaussian, or thermodynamic) average over a scale
quantity such as mass in R,(3) is D{”. By principle 1, this quantity does not vanish after
ensemble averaging. In contrast, the irreducible representation of a polar vector as
molecular center of mass velocity, v, is D{", signifying that velocity is negative to P in
R;(3) and is a rank one cartesian tensor. By principle 1, the ensemble average over v,
denoted by (v), vanishes for all ¢. Similarly, the irreducible representation of an axial
vector such as molecular angular velocity, €, is Dg”, and the ensemble average (€2)
vanishes by principle 1.

In order to apply principle 1 systematically to more complicated ensemble averages,
such as time correlation functions, we need the Clebsch—Gordan Theorem

D(n)D(m)=D(n+m)+D(n+m—I)+ o +D|n—m|
gXg=uXu=g (1)

gXu=uxg=u

which multiplies irreducible representations of either R, (3) or R(3). (In the latter omit
the subscripts when multiplying.) A good example is the problem of whether the time
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correlation function (v;(£)€2;(0)) between v; and ; exists in either point group, i.e. in an
achiral or chiral ensemble. Principle 1 provides an immediate solution, as follows, which
is not obvious from the equations of motion in standard statistical mechanics. The
symmetry representations of the time correlation function in the two point groups are

R,(3): T({(vi(1)Q;(0)) = Df,"D;“ =D®+ D+ D® (2)
and
R(3): T({vi(n);(0)») = DD = D® 4+ DO 4 DO, 3)

Applying principle 1, we see that the autocorrelation function vanishes in R,(3), but may
exist in R(3). We can proceed in this way to work out by symmetry whether a
complicated ensemble average may or may not exist in either point group, without
immediate recourse to computation. Principle 2 allows a similar analysis in the molecule
fixed (x, y, z), and shows [13] that in this frame a correlation function such as (v;(1)Q;(0))
may exist, even when the molecular framework is achiral. Using these principles in
combination with computer simulation allows a detailed appreciation of molecular
dynamical processes in ensembles of molecules.

In order to apply principle 3, we need the D representations of applied force fields,
together with the latter’s motion reversal symmetry. We also need to know how the fields
interact with the ensemble, expressed succinctly by the interaction Hamiltonian. In this
context, the motion reversal symmetry operator, T, reverses momenta but does not
affect coordinates. Thus, the T symmetry of a static electric field (Ej) is positive and
that of a static magnetic field (Bj) is negative. In this context, “static” implies
“intrinsically time invariant”, so that the time derivatives vanish;

dE, dB, 0 4
de At )

If these derivatives exist, the fields are defined as intrinsically time dependent, so that
their motion reversal symmetry may be either positive or negative. For example, the T
symmetry of a cosinusoidal electric field is

E,(t) = Ei() COS(a)t); El( - t) = Ei(l COS( - (l)t)E,(t) = El( - t) (5)
which is positive, but it is negative for a sinusoidal field
El(t) = Em Sln(wt), El(—t)z Ei() Sln( —wt)E,(t) = _El(‘t) (6)

Opposite symmetries are obtained for time dependent magnetic fields. For the electro-
magpnetic fields discussed in this paper, both their electric and magnetic components are
complex, one part being cosinusoidal and the other sinusoidal, so that the overall T
symmetries of both the electric and magnetic parts are mixed, denoted (%) for the
electric part and () for the magnetic part.

4. PARITY AND REVERSALITY OF THE COMPLETE EXPERIMENT

In addition to applying the three principles it is necessary to consider the P and T
symmetries of the complete experiment, following the well known Wigner principle first
proposed in 1927 in the context of quantum mechanics [24]. The Wigner principle is
described fully in the literature, for example Ref. [23], and states essentially that if Por T
are applied to the observables, fields, and molecules of an experiment, then in both cases
these must be relatively equivalent in the P or T inverted experiment. The principle can
be used to show [23], for example, that a static electric field cannot cause optical

SA(A} 46:10-F
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rotation, in contrast to a static magnetic field, essentially because when T is applied to
such an experiment, the field, observables and ensemble are not relatively equivalent in
the motion reversed experiment. Later in this article, the Wigner principle is applied to
one of the new effects allowed by gtsm.

5. TENSOR SYMMETRIES

In what follows, frequent use is made of tensor notation, in which summation is
implied, as usual, over repeated indices. In this context, the tensor symmetry of a
correlation function such as that between linear and angular velocities of a diffusing
molecule is, from the Clebsch—Gordan Theorem;

R,(3): D+ D"+ D
R(3): DY+ DV + D@,
a sum of three parts. This sum is an expression of the fact that the second rank tensor

A= (vi()L;(0)) M

is, in general, the sum

whose trace, A/3, is denoted by DY in R,(3) or by D in R(3). Here J;; is the Kronecke
delta. The antisymmetric part is

Ci= e B; = 3(A; — A;) )
equivalent to a pseudovector (or axial vector) through the tensor relation
Ce= SijkBij (10)

where & is the totally antisymmetric third rank tensor, whose only non-vanishing
elements are

Sxyz = Szxy = gyzx =1

(11)

é‘xzy = é‘yxz = gzyx = 1 .
This is also known as the Levi—Civita symbol. The antisymmetric part of the tensor is

denoted D" in R,(3) or D™ in R(3). The third part is the irreducible, traceless,
symmetric, second rank tensor

A
§i=3(Ay+ A;) — 5 9 (12)

which is denoted D in R,(3) or D in R(3). The quantities A, C, and S;; form spherical
tensors of rank 0, 1 and 2, respectively, which transform as the spherical harmonics Y}
for L=0,1, and 2.

6. FiIELD INDUCED ELECTRIC AND MAGNETIC DiPOLE MOMENTS

The energy of each molecule of an ensemble is assumed to change by

AH=—u,E;:— mB (13)
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when treated with a strong electromagnetic field propagating in Z. Here, y; is the total
molecular electric dipole moment; m; its (classical) magnetic counterpart; E; the electric
field and B; the magnetic field components. These electromagnetic components are
complex in general and defined according to IUPAC convention, with right or left
circular polarity. The total electric and magnetic dipole moments are each sums of
permanent and field induced components. For each molecule of the ensemble the
Hellman/Feynman Theorem gives

0En _ [0H 0En _ /0H
o8 ~(az) =~ 55~ ()=~ a9

from the Hamiltonian [Eqn (13)]. A double Taylor expansion then results in

0En 0En
En(Ei, Bl) = En(L 0 + Ei g + Bi
0.0 0.0

E, 0B,
+1 EE 0’En v EB O’En
2| T\eEGE;) T \oEaB/, ,
+BE< 0’En BB 8°En
151 B + D\ + e
J ‘aBiBEJ' 0.0 : aBiaB.i 0.0 (15)

Applying Eqn (14) gives the following series expansions for the electric and magnetic
dipole moments of each molecule in terms of products of field tensors and susceptibility
tensors

1
W=+ ayE +ayBi+ E[ﬁlijkEjEk + BoijE; B + By BiEx +ﬁ4ijkBjBk]
1 1
+§!' ylijklEjEkEl+y2ijklEjEkBl+ . +y8ijlejBkBl +E [ . ]+ . (16)
1
m;=my;+ ay;B;+ ay,E;+ 1 bk BBy + bk B, E + by Ej By + by EiE

1
+§ |:glijlejBk31+ - +g8ijk|EjEkEl:| + .. (17)

The susceptibility tensors are identified as follows, and their symmetry properties
tabulated in Table 1 in terms of time reversal (7) and parity reversal (P) symmetry, and
the irreducible (D) representations [1-3] of point group theory.

<6En> ( &?’En )
MHoi=— > A= — 5
oE,; 0 ! OLEOE, ”

_ O*En ‘ . _ (9En\
Ay = BEiGBj Yo M= OB, 00,---

ED = i+ je®; E® = Ey(i—j)es;
EY = Ey(i — ij)e; E® =E(i +if)er;
BY = B (j—ii)e ; B® = By(j+ii)e”';
BV = By(j +ii)e’; BR = B(j— ii)er;

O =wt—K, r; Og=wt—Kg-r
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Here the superscripts (L) and (R) denote left and right circularly, polarised, respecti-
vely; and the plus or minus subscripts denote complex conjugate sum and difference
frequencies which appear in non-linear optical phenomena [18-21]. The phases @ are in
IUPAC convention, the other symbols being defined conventionally.

7. APPLICATION OF GTSM

gtsm is used here to argue for the existence of various new non-linear birefringence
phenomena, which in some instances are accompanied by optical rotation and dichroism.
In so doing, thermodynamic ensemble averages must be taken over the quantities in
Eqns (4) and (5), applying the third principle [1-5] term by term. To do this, the
irreducible representations [1-5] of each susceptibility and field tensor quantity are
defined in the appropriate ensemble point group: 1) R (3) for ensembles of structurally
achiral molecules; 2) R(3) for chiral ensembles. Some of these are given in Table 1 for
R,(3). For the equivalents in R(3) remove the subscripts (g or u). The P and T
symmetries of the field tensors are, respectivley, the products of individual field
components, E and B, defined through the fundamental scalar (¢) and vector (A)
potentials

E=—-0A/0t—V¢; B=VxA (18)

from which E'is — to Pand £ to T; and Bis + to Pand ¥to T.

In Table 1, the T representations are given in brackets. The symmetry representation
of the complete product of field and susceptibiity is the product of D, P and T
representations, worked out [1-5] with the Clebsch—Gordan Theorem. The number of
times D{"(x) appears in each field-susceptibility product signifies the number of
independent induced dipole components generated by the complete product. Thus, on
the right hand side of Eqn (16) there is one independent type of induced dipole
component at zero’th order in the field (i.e. u); three at first order (there are three
occurrences of D{’(£) in each of the complete products a;E; and ay;B)); fifteen
independent types in each of the four second order field tensors; and no less than 91
different types at third order for each of the eight different field tensors in the double
Taylor expansion.

These results come directly out of the third principle, which in this context asserts that
the symmetry of the ensemble average over the observable on the left hand side of Eqn
(4) is obtained from the appropriate D{"( %) types in the ensemble averages over the
complete products term by term on the right hand side. Each type signifies a different
effect. References to types (effects) recorded in the literature are made in the following
discussion. gtsm in this context shows without further analysis that only a few out of the
rich variety of effects possible have been named or recorded in the literature.

This analysis can be repeated for Eqn (5) (the induced magnetic dipole moment); and
for other observables, such as Barron’s signature of natural optical activity [23], D{(+).
This occurs in the susceptibilities marked with an asterisk in Table 1, i.e. in those which
are — to P. According to principle 1 of gtsm (the Neumann/Curie principle [1-5], the
ensemble averages over these susceptibilities vanish in R, (3) because they do not contain
its totally symmetric irreducible representation, D{". They exist, however, in R(3) of
chiral ensembles, giving rise to: (a) optical rotation and dichroism; (b) contributions to
induced electric and magnetic dipole moments which accompany (a). This is because
Barron’s signature in R(3) is the totally symmetric irreducible representation itself, D).

8. DiscussioN

Only a few of the possibilities from the gtsm symmetry analysis seem to be known, or
clearly named, in the literature. Table 2 is a summary of these. They are named with
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Table 1. R,(3) irreducible representations of susceptibility and field tensors of Eqn (16);
electric dipole

Field Susceptibility
Hois D{(+)

E; D{(%) i DY+ Dy + D(+)

B; DY(F) azy* DY+ D{"+ D{(-)

EE;; D"+ D"+ DY(+) Buw*  D®+3DV+2D® + DO(+)
EBj; DU+ D+ DO(-) Buii  DO+3DV+2DP+ DO(F)
BE; DO+ DM+ DP(-) By D©+3DV+2DP+ DO(F)
B.B;; D+ D'+ DP(+) Buig:*  DO+3DV +2DD + DIO(+)

EEE: DY +3D"+2DP+DM(%)  yys  3DP+ 6DV +6DR +3DY + DP(+)
EEB,: DY +3D +2DP+DP(F)  yups*  3DP+6DV+6DP +3D + DIV(-)

BBB; D" +3D\"+2D+ DI(F)  ygus*  3D®+6D"+6DP + 3D + DY(-)

* Contains the pseudo-scalar representation in R,(3).

references, if recorded, suggested names are given in inverted commas if they seem not
to be in the literature. (1) The first order optical Kerr effect [25]. (2) Electro-optical
rotation [25]. (3) “First order magneto-optic birefringence”. (4) “First order magneto-
optic circular dichroism”. (5) “Second order electro-optic birefringence”. (6)
Magneto-chiral birefringence [18-20], the Wagni¢re/Meier effect. (7) Inverse Faraday
effect [17]. (8) Inverse magneto-chiral birefringence [21] (the Wagniére effect). (9)
“Second order electro-optic circular dichroism”. (10) “Second order magneto-optic
birefringence”.

Column 2 of Table 2 denotes that this list is by no means exhaustive. The listed first
order effects, for example, all come from the scalar or pseudoscalar parts of the various
susceptibility tensors. There are in general three types, or components, to each first
order effect. In the optical Kerr effect (effect 1), the quantum mechanical representation
in column 3 corresponds to a part of the classical complete product of column 2, in this
case the D part of a;; multiplied in to the D{" representation of E%®. In general, both
the susceptibility and field tensors are complex, and this allows other effects to occur,
which seem to be largely unrecorded in the literature. In particular, each of effects 1-4 is
accompanied by two others, from the D{" and D parts of the susceptibility multiplied
by the D{" part of the field. Using the Clebsch—Gordan theorem, both types of D
multiplication can result in the required symmetry of the real observable, i.e. an induced
electric or magnetic dipole moment. At second order there are already no less than 15
types, so that 5 to 10 are each only one out of 15 different effects allowed by gtsm. The

Table 2. Some effects from gtsm to first and second order in E

and/or B
Effect Part of Quantum Rep. [21]
First Order
1 a ik (uin))E
2 a2;B; (uim;)B;
3 a ;B (mm])B;
4* axE; (miu; ) E;
Second Order
5 (BakEiBx+ BaBiE)  (m-p' Xm')(E_XB,)
6* (B BiBy) (u-m'xm")y(B_xXB,)
7 (byEiEL) (m' -uxu' )(UE_XE,)
8 (byjBiEc+ byi,E;B,) (m-p' xXm")(E_XB,)
9* (BiEiE) (n-pXpu"YE_XE,)
10 (b BiBy) (m-m'xm")(B_XB.)

* Denotes dichroic effect, producing optical rotation; E; and B;,
in general, denote EX-® and B R,
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dichroic effects are marked with an asterisk in Table 2. They are simply defined by the
occurrence of DY in the susceptibility tensor. There is no need to make a further
distinction [23] between “natural” or “magnetic” optical activity. Columns 2 and 3 match
the symmetries, furthermore, of the isotropically averaged quantum matrix elements
introduced by Wagni¢re [21] with those of the appropriate parts of the classical
susceptibility tensors. In general, each field representation E; and B; in Table 2 can be
(R) or (L), and a sum (+) or difference (—) frequency. This allows for a great deal of
lattitude in the experimental investigation of these effects as functions of E; and B;, their
products, field strengths, polarizations and sum and difference frequencies. Finally, all
these ensemble effects can be computer simulated using the appropriate torques [26-31]
and frame transformations. Magnitudes of effects 6 and 8 have been estimated in the
literature [21, 32] and experimental investigation of effect 6 is in its final stages [33]. The
inverse Faraday effect was first confirmed experimentally in the mid sixties [34]. There
has been one, preliminary, computer simulation of effect 1 [28].

In order to illustrate how a symmetry predicted non-linear optical effect is treated
analytically and experimentally, we solve the Maxwell equation for axial birefringence
[18] due to electric and magnetic rectification measured with a co-linear pump and probe
laser system. By switching the intense pump laser from right to left circular polarization,
the unpolarized probe picks up a change in refractive index caused by symmetry allowed
perturbations caused by electric and magnetic rectification [21] in the pump laser. This
change in refractive index provides new information on the mediating molecular
property tensors, which are in general complex and frequency dependent [23].

Electric rectification is described by the field product [21];

(p-p' xu)(E_XE,). (19)

The vector product here is between complex conjugates of right and left circularly
polarized electric components of the electromagnetic field. Thus

EV x EO = —E® x E® =2iE% (20)

which removes the time and wave vector dependence (phase) of the electromagnetic
field, and which is, in general, complex. The effect 9 of Table 2 depends after isotropic
averaging [21, 23] on this product. There is also a real product

iED x ED = —jE® x ER = —2Fk. (21)

There are magnetic equivalents (effects 6 and 10). All four effects cause axial biref-
ringence of the type first proposed by WaGNIERE and MEIER [18] for static magnetic
fields (an effect now known as “magnetochiral birefringence™). Restricting consideration
for the moment to electric rectification, we seek a way of observing this with a pump
probe laser system, which is a standard experimental set up in non-linear optics. This is
achieved through the Voigt Born perturbations

a lij = (a 1ij )() +2a Ii_izE;_,)zi (22)
and
a2ij = (a2ij )(, + 2a:iszﬁzi (23)

as the polarization of the pump laser is switched from left to right. The theory of axial
briefringence [32] uses the standard expansion

u,= a“jEj + a2iij + %AijkvjEk + ... (24)

of the electric dipole moment, which incorporates the electric field gradient V,E;
premultiplied by the electric dipole/electric quadrupole tensor A;,. Essentially speaking,
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the inclusion of the term $A4;,V;E, removes the problem of origin dependence [23] in the
molecular property tensor definitions. We therefore add the Voigt Born perturbation;

Aijk = (Aijk)(l * 2Aijsz(2)zi- (25)

Finally, the usual theory of axial birefringence includes magnetization to the first term
only of Eqn (17);

m,=a§§’lmEJ+ R (26)

With these definitions, and applying the standard theory [23], we obtain, after some
calculation, the axial birefringence [32];

w
<n,ﬁR - n’ﬂ‘L>l = 2,uOCNE(2)z[<aI’Z,xyz> + <agyxz> - E ((A ),(xzz + <A ;yzz))] +... (27)

Axial birefringence due to electric rectification {of the type that generates the second
order effect (9) is therefore mediated by these scalar elements of three and four rank
molecular property tensors, the only elements to survive ensemble averaging. This
birefringence is easily measurable with an unpolarized probe laser in the same (Z) axis as
a powerful pump laser, whose circular polarization is switched from right to left with a
device such as a piezzo-optic modulator [35]. The birefringence varies with the frequency
of the probe, and is essentially a new type of spectrum.

Similarly, there is axial birefringence due to the field product [Eqn (21)], given after
standard calculation by

w
<n’TI‘R - n’1‘1L>a = 2,“0CNE;_’)Z[<aéxyz> + <aéyxz> - ?((A),(lxzz> + <A;/,v7z >)] +... (28)

i.e. by the real as opposed to imaginary parts of the mediating tensor components. In
general, both effects are present simultaneously, but both are proportional to E}, and
therefore are distinguishable from other non-linear effects. They are expected to
completely dominate the accompanying magnetic effects.

An order of magnitude estimate of the effect can be made by writing Eqn. (2), for
example, as

<’l'ﬁR-'n'ﬂL>2$2ﬂ()CNEﬁzaéxyLa+ N (29)

where L, is the second order Kielich function {28] which mediates the orientating effect
of the pump laser, which sets up a potential energy of the form

—a lijE(liE()j

with the molecular polarizability. The torque set up by this effect is computer simulated
in Ref. [28]. The Kielich function goes to unity as E,— o . We set this conservatively at
0.01. The other quantities in Eqn (29) are as follows;

=41 x107"1*C>m™"; ¢c=3x10®ms™!; and N=6x10*m>;

and for aj,, we use a conservative order of magnitude of 107**A%J ~'m%. This leaves the
electric field strength of the pump laser. HUTCHINSON [36] estimates that this can reach
about 10°V m™' in a small, commercially available, Q switched and focussed Nd: YAG
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laser. For L,=0.01, the birefringence from Eqn [29] is
(nyr—niyL) =144 x 107" EG, + . . . (30)

and for a conservative value of E, of 1000 Vm™', this is about 0.01. Clearly, in a
focussed and Q switched Nd:YAG laser, the effect can be orders of magnitude larger,
and the Kielich function, L,, can be saturated, i.e. reach 1.0.

Finally, application of the Wigner theorem [23, 24] to the pump/probe configuration
just described is as follows. Application of the motion reversal operator, T, reverses the
direction of the propagation vector, K, of both lasers, while leaving the sense of circular
polarization unchanged. The relative configuration of these variables, and of the
observable, axial birefringence, is unchanged. Similarly the T operator leaves molecular
structure unchanged. Therefore the experiment conserves reversality of the complete
experiment. The application of the P operator reverses the propagation vector of both
the pump and probe lasers, and also reverses the sense of circular polarization, so the
axial birefringence changes sign. P has no effect, however, on the structure of an achiral
molecule, and in consequence the experiment violates parity in an achiral ensemble. It
conserves parity in a chiral ensemble, however, because P in this case generates the
opposite enantiomer. The P reversed complete experiment is therefore relatively the
same as the original experiment in a chiral ensemble only. In other words there will be no
effect in an achiral ensemble, in which all elements of the mediating tensor components
in Eqn (27) will vanish.
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