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b We continue our development of group theory statistical mechanics applied
9 to non-newtonian shear and elongational flow. We discuss some new aspects of
shear flow discovered by non-equilibrium molecular dynamics, NEMD. We
investigate the origins of time reversal asymmetry in newly discovered cross-
correlation functions. Using the profile unbiased thermostat, PUT, shear flow
algorithm we discover that the strong phase is stable in 3D, {for typical system
sizes considered by molecular dynamics. In addition, for the first time we apply
NEMD, to simultaneous shear and elongational non-newtonian flow. New
equations of motion are constructed to enforce the elongational flow. We apply
. ' transient flows to a model Lennard-Jones liquid and monitor the thermodyna-
mics and mechanical response, directly, and from transient time correlation
functions. The value of the shear viscosity can be increased or lowered by the
presence of simultaneous shear and elongational flow, in which the main veloc-
ity flow directions are perpendicular or parallel, respectively. A combination of
shear and elongational flow can produce a heat flux, the thermal equivalent of
the Weissenberg effect.

1. Introduction

! We have recently demonstrated [1-2] that a shear rate, dv,/0Y, induces newly
discovered time asymmetric cross correlation functions of velocity in the laboratory
frame XY Z which are irreversible and asymmetric to time displacement (i.c. break-
ing the Onsager—Casimir symmetry of equilibrium correlation functions [3-7]), i.e.

‘v Cox(O)oy(t)> # {vx(t)v,(0)). (1)

These results break the Onsager—Casimir symmetry and violate Onsager's reciprocal
relation at arbitrarily small applied field. This discovery therefore applies in *‘linear’
or ‘non-linear’ response regimes. The theory was described that predicts those
time-correlation functions existing in (symmetry breaking) simple planar shear flow,
which are trivially zero in the absence of shear flow for symmetry reasons. The cross
correlation functions of this type are predicted by the third principle of group
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theoretical statistical mechanics, GTSM. Their observation using an assumed
(linear) profile thermostat, SSLOD, NEMD [1] and subsequently by a profile
unbiased thermostat, PUT in 2D and 3D [8] vindicated the generality of the predic-
tions of the axioms of GTSM.

The result (1) is given by the third principle of GTSM, [1], which states that an
applied external field of given symmetry may induce new thermodynamic averages
in an ensemble at field-applied steady state. These averages take the symmetry of
the field itself. The symmetry arguments for the appearance of the shear induced
cross-correlation functions depend on group theory in the laboratory frame XYZ
defined by the three dimensional rotation-reflection group, R,(3), with irreducible
representations denoted by the D symbols, D, ..., D and DY, ..., DY, respec-
tively; where the subscript, g (or gerade) denotes even to parity reversal symmetry and
u (or ungerade) denotes odd to parity reversal symmetry (ie. (q, p)— (—q, —p))-
The superscipts refer to the order of the spherical harmonics. The D symmetry of the
strain rate was shown to be,

TV)I(e~") = DYDY = DY + DY + DY, )

The irreducible representation, D + D" + D{?, of the strain rate tensor reflects
the fact that it has an antisymmetric component of vorticity, of symmetry, D"”, and
a symmetric component of symmetry, D\’ + D{’. The D{"’ component is a vector
product and the D{¥’ component is a symmetric tensor product. The response to the
pure strain rate tensor has symmetry D"z’. Therefore we have, for shear flow specifi-

cally,

000 0 #2 0 0 20
00 0™ +|—-%2 0 o)™ +|32 o o)D),
000 0 0 0 0 00

where 7 is a constant shear rate. GTSM tells us that the tensor symmetry of all time
correlation functions of the type, ¢A(0)AT(t)>, where A is a polar or axial vector
representing a molecular property, is also DY’ + D{" + D{¥. The term, D\, rep-
resents the trace or the diagonal sum of the cross correlation tensor, for example for
velocity, v,

C(t) = <VOVT(D, 3)

which has the same D symmetry as the strain rate tensor. Here {...) denotes an
average over time origins, where, for t > 0 at least, the system is not at equilibrium.
When the latter has planar couette shear symmetry, the induced ccf (3) is traceless
[1, 2]. The vector and tensor parts of the symmetry signature represent, by principle
(3), the time antisymmetric and time symmetric cross correlation functions [1]

D{V: (ox0)o(t)) =-— {or(O)vx(t)), )
and
DY): {ox0)y(1))> = {vy(0)vx(t), (5)

respectively. Although they separately obey the Onsager—Casimir symmetry, i.e. are
either negative or positive to time reversal, and dv,/3Y field in general produces a
weighted sum of (4) and (5) to give the asymmetric result (1). This was noted in the
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previous study in this series [2]. This is the first observation of a counter example to
Onsager’s reciprocal relation, applying at all strain rates. Thus according to GTSM,
an imposed strain rate, dvx/dY in couette flow induces the existence in the labor-
atory XYZ frame of the time correlation functions (4) and (5). Similarly for the
pressure tensor components we have,

(PxA0)PyAt)> = —Pyz(0)PyA1)), (6)

and

CPxz0)PyA1)> = CPyz(0)Pxz(1)). ™

We demonstrate, therefore, a new link between microscopic dynamics and the clas-
sical description of rheology involving pure strain rate and vorticity terms.

If the shear strain rate is y = dvy/0Y, the new cross-correlations are of the type
{oxdt)vf0)), (Poxd)Py(0)> and (P {t)Pxy0)), where v is the atomic velocity in the
XYZ frame and P, is the aff component of the pressure tensor [1, 2]. That is,
(PxzO)Pyz1)>, {(PxlO)Pxx(t)), {Pxy(0)Pyy(t)> and (Px({0)PzA1)>. This includes
also these ccfs with time arguments reversed, which as noted can be different func-
tions under nonequilibrium conditions.

In this study we also apply GTSM for the first time to elongational flow,
Ovx/0X, 0v,/0Y and 0Ov,/0Z. Also simultaneous elongational and shear flow are
considered. Within the usual restriction of the simulation cells containing N ~ 10%-
10° molecules, a steady state elongational flow cannot be achieved for a sufficiently
long time to obtain reasonable statistical averages. In previous simulations of elon-
gational flow, this was overcome by implementing a series of transient elongational
flows (lasting for 3—4 ps for Ar) starting from different points in equilibrium phase
space [9, 10). A series of short-lived steady states was achieved for the purpose of
averaging. At the small strain rates considered here a steady state can be achieved
before the end of the transient, making this approach suitable for investigating
non-newtonian steady states. This approach is applied here.

The symmetry arguments of GTSM are valid outside the customary linear
response regime and for the transient phenomena implemented here. In particular,
they may be applied to both sides of the important new Evans—Morriss gener-
alization [11-13] of the fluctuation—dissipation theorem extended from linear
response to arbitrary field strength, F,

F,
kg T

", (B()=(BO) - J (B(s)J(0)> ds, ®)
(]

where {...) represents an average over an equilibrium ensemble over initial states.
Here B(t) is an arbitrary phase variable and J is the dissipative flux defined by,

dH
dt = JF [ 34 (9)
where H is the hamiltonian. B(0) and J(0) are evaluated in the field-free ensemble.
B(s) evolves from B(0) with field-on dynamics initiated at s = 0.

The response to a suddenly applied field is now related to a correlation function,
and thereby brought within the framework of GTSM. Principle (3) of GTSM [2]
predicts that elongational flow field should induce new transient time correlation
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functions of the form,
CAOAL)), i=X,Y,2Z, (10)

whose D symmetry is D{”. Examples of these correlation functions are, {vx{0)vx(t)),
CorOA1)>, vAO)AD)D, {PxdO)Pxx(1)), (Pyy(0)Pyrlt)) and (Pz0)Pz,(1)), where P
is the pressure tensor. Here we are interested in the transient time correlation
functions. Therefore the quantity at time ¢t = 0 is taken from the equilibrium ensem-
ble, whereas the quantity at time ¢ > 0 is taken from the non-equilibrium state.

Another new feature of this work is the simultaneous application of shear and
elongational strain rates, which frequently occurs in the complex strain rate dis-
tribution found in processing flows, [14]. If the elongational strain is accompanied
by shear strain we expect correlation functions of the type (2). A combination of
shear and elongational strains will give rise to cross transient time correlation
functions of both the off-diagonal type (1) and the diagonal type (10). Using (8) we
also note that the response functions directly observed also share these symmetry
properties.

The transient ccfs of type (10) have symmetry D{” and there clearly cannot be
asymmetric in index reversal as in (1). (It is impossible to have v {(Q)v) (1)) =
— Lo t)vx(0)).) Therefore the ccf induced by *stretching’ or elongational flow are of
the diagonal type with no vorticity and no off-diagonal type deformation. The time
dependence of (A{0)A(t)>, i=X, Y, Z, is determined by the elongational strain.
They also exist at shear- and elongation-free equilibrium because they have the
scalar signature D‘,°’. The latter signature refers to the trace, and individual elements
of the trace may have a different time dependence under elongational shear strain or
stress. If shear stress is added to elongational stress then the time-dependence of
these diagonal elements might be changed from that caused by elongational stress
alone.

In summary, shear stress induces off-diagonal ccfs which may be index asym-
metric. In contrast, elongational stress induces diagonal elements which cannot be
index (time) asymmetric,

2. Simulation details

In this section we describe methods for incorporating planar shear and elon-
gational flow in the classical equations of motion of molecular dynamics.

The MD simulations followed particles of mass, m, interacting via the Lennard-
Jones, LJ potential [9],

¢(r) = 4e((0/r)'? — (a/r)"). iy

The basic technique is that used in a previous MD study [1]. The MD simulations
were performed on a cubic unit cell of volume V containing N = 256 and N = 500
for the transient flows and N = 500 for the steady state shear flows. The interactions
were truncated at 2-50. We use LJ reduced units throughout, i.e. kg T/e = T, and
number density, p = Na3/V. Time is in o(m/e)*/?, strain rate is in (¢/m)'/?/a, viscosity
is in (me)'/?/a? and stress is in £0 ~ 3. The temperature was fixed by velocity rescaling
of the peculiar velocities [15, 16]. The time step was 0-015. The state point mainly
considered was a near triple point state, at p = 0-8442 and T = 0-722. In the
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sheared case, 7 = 1-0, produces n = 2-1, about 30 per cent shear thinning [17]. The
stress and thermodynamic properties are governed mainly by the configurational
(¢(r)) dependent terms.

2.1. Shear flow

We used the SLLOD algorithm in most of the calculations [18). The peculiar or
thermal velocity is denoted by . For molecular position, R,

Rx=vx=ﬁx+?Ry, (12)
Ry = vy = by, (13)
Rz = vz = ‘i)z, (14)
dv o

—d—tx=Fx/m—yv,, (15)
dby

Tl Fy/m, (16)
dv,

Dz _ Fyfm, a7

where the a component of the force on a particle is F,, the velocity is v,, the
peculiar velocity is ¥, (i.e. that component of the velocity in excess of the streaming
flow velocity) We maintain constant kinetic energy (‘temperature’) within the
Verlet algorithm using velocity rescaling applied to v,. The transient time corre-
lation functions were determined using the method of Evans and Morris [11-13]
with appropriate symmetry mappings of the equilibrium phase state points to
reduce the noise at long time.
We calculated the shear viscosity, », from,

n=—Pu/h (18)
where
N N-1 N N
Pyy= 1 Y mibyby— Y Y (reTyulry) aelr,) ) (19)
| 4 i=1t i=1 J>i dr

where r,;; is the x component of r;; and V = (N/p), the volume of the MD cell.

Some simulations were also carried out at steady state using the PUT algorithm
[19, 20]. In SLLOD a linear velocity profile vy{(Y) is assumed in the thermostatting
procedure. Any deviations from this will be taken as an extra contribution to the
temperature and duly suppressed. In PUT no assumption is made about the instan-
taneous shear velocity distribution within the MD cell. It is therefore more realistic
than SLLOD at high shear rates because it naturally incorporates the local velocity
fluctuations about the mean (from the shear rate). Therefore the onset of turbulence
is more realistically modelled. Our implementation of the PUT equations of motion
differs from that of Evans and Morriss, in determining a local temperature for each
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particle from its local drift velocity. The instantaneous average drift velocity around
each particle is obtained by summing the velocities within an enclosed sphere. A
spherical truncation radius of value, r, = 1-5 or 2:0¢ was typically used. (Properties
were only moderately sensitive to values of r, in this range.)

2.2. Elongational flow
The equations for elongational flow are similar to those for shear flow.

Ry = vy =0y + Px Ry, B (20)
Ry = vy =0y + ¥y Ry, (21)
RZ=vZ=BZ +}.,ZRZ7 (22)
dv L.
= = Fx/m = ixtx, 3)
dv .
5 = F/m = inby, (24)
and
dv L.
ﬁ:Fz/m—yzvz. (25)

Again thermostatting was performed using velocity rescaling. For convenience, we
define yx = 97 6x, 9y =770y and 97 = y,6;. Elongational flow has 6, =1, §, =
—1/2 and 6, = —1/2 or any permutation of this sequence. We consider here two
elongational strain geometries.

() 6x =1,8,= —1/2and 6, = —1/2,
(i) 8y = —1/2, 8, = 1and 8; = —1/2.

We calculated the tensile viscosity, n, from,

"T=25¢Puﬁ"r7 (26)
where
1/ N-1 N v
P = % (; Dai ig‘ jg‘(raij TaijlTij) —t—(rﬁlz) 27

As the fluid MD cell is periodically repeated in all three dimensions, the elon-
gational flow should only be susceptible to similar finite N artefacts as for shear
flow. There is a constraint that must be satisfied in elongational flow, which is
absent in the pure shear flow simulations. There is upper limit on j,, determined so
that none of the cell dimensions, sidelength L, should be less than twice the pair
potential truncation distance (i.e. 50) at any time during the elongation transient.
(The maximum distortion occurs at the end of the transient, as L{t)/L{0) = exp (7. t})
Despite there being this upper bound on y; the range of allowable j; was sufficient
to capture newtonian and non-newtonian phenomena broadly comparable to those
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of shear flow up to 7 ~ 0-5. The elongational viscosities are obtained by applying
{26) in the plateau region of the response, should one be manifest. At high j; the
material structurally degrades before a plateau in either shear or elongational stress
occurs. The value of this critical 4, depends on p, T and ¥ if shear flow is also
involved.

Computations were carried out in single precision on a CRAY-XMP at the
University of London Computer Centre.

3. Results and discussion

3.1. Shear flow
In steady state shear we evaluated the cross correlation functions,

B0, <DHUOWL)),  <DAOWKE)), (V/ky TIKPxr{0)Pxy(1)),
(V/ks TYXPxA0)PxA1)), (V/ks TIXPyAQ)PyA0)>, (V/kg T)CPxz0)PyA1)>,
(V/ks TIXPx 0P x(1)>,  (V/ky TIXPxy0)Pyz(t)), (V/ky T){Pxr(0)Pxx(t),

(V/ks TIXPxy(0)Pyy(1)) and (V/kg T)CPxr(0)P2A1)).

GTSM predicts that the following correlation functions could exist in dvy/dY
shear flow: <B(0)0x(1)>, {Dx(O)0 (1), (V/kp TICPxA0)PyAt)>, (V/kg T)Px{0)Pxx(1)),
(V/kg T){Px(0)Py(t)> and (V/kg T){Px Q)P 4(t)>. We observed all of these as non-
zero functions and also the different ccfs formed by reversing the time arguments in
the above ccfs. Note that the velocity ccfs can be defined in terms of v or v
velocities. The existence of these functions is independent of which of these velocities
is chosen.

The strain rate tensor in planar couette flow of the type duvy/dY consists of a
symmetric traceless or ‘pure strain rate’ component and an antisymmetric com-
ponent associated with vorticity. The latter causes a rotation of the primarily dis-
torted fluid structure away from the n/4 and 3n/4 directions. As mentioned in the
Introduction, GTSM, reveals that there are two types of time-cross correlation
function induced at the microscopic level by dv,/dY flow [1, 2, 8]. One is symmetric
to time or index reversal (i.e. (q, p) - (q, — p)) and represents the effect of the pure
strain rate component. The other is antisymmetric to index reversal and represents
the effect of vorticity. The sum of both influences is generally asymmetric to a time
reversal, as will be shown by SLLOD and PUT NEMD simulations. This is the first
observation of an antisymmetric time cross-correlation function, ccf, by computer
simulation, and the first successful resolution of pure strain rate and vorticity in
terms of the ccf.

The generdl-features of the ccfs have been discussed in a previous publication
[1]. However, there are a number of new points in the case of steady-state couette
flow which we discuss first before moving on to the transient flows. We first consider
the 3D simulations performed on a high density state point near the LJ triple point
state.

The (PyA0)Pyt)> and (PyAt)PyA0)> for the PUT 3D LJ p=0-8442,
T = 0722, 9 = 20-0 and N = 500 state are shown in figure 1. They both start from a
finite negative value and then decay in an oscillatory manner with frequency
v ~ $/2. This oscillatory structure we attribute to the formation of a ‘string’ phase
in which the molecules travel along the streamlines in lines packed together in a
triangular lattice when viewed in cross-section (see figure 2). The PUT algorithm
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Figure 1. The time cross-correlation function (V/kg T PxA0)P,t)>, solid line and
(V/kg T) Pyz0)Py{t)>, squares using the PUT algorithm (r, = 20) at the 3D LJ
N = 500 state p = 0-8442, T = 0-722 and y = 20.

induces a string phase in 3D for these finite periodic systems in contrast to the case
for 2D fluids [19]. 2D PUT simulations using the present method showed no string
phase at the same state point as {(and in agreement with) Evans and Morriss [19].
The lack of a string phase in 2D by both implementations of a profile unassumed
thermostat makes the difference in behaviour in 3D more significant. The string
phase in figure 2(a) is in the transition region between an amorphous and ordered
phase (7 ~ 2-3) [17]. This is why it shows some remnants of the amorphous fluid
phase in comparison with the highly ordered = 20 state of figure 2 (b). The simula-
tions were repeated starting from a truly fluid state to verify that the string phase
produced by the PUT algorithm in 3D is well-defined and not a product of hyster-
esis. Adjacent molecules in neighbouring strings are separated by a distance ~o.
The relative velocity between these molecules in the streaming direction is ~a¥.
Hence the frequency of registry of molecules is ~j. Irrespective of the wider debate
concerning the existence of the string phase in monoatomic fluids, figure 1 is note-
worthy because the time-reversed function, {PyA0)Py(t)), is significantly different,
being neither symmetric nor antisymmetric to {PyA0)Py(t))>. This can be traced to
the contribution and dominance of the vorticity component of the flow, which
unlike the pure strain component of the strain rate tensor, has negative symmetry to
time reversal. (Calculations with N = 108 produced the same time-reversal asym-
metry, revealing that this effect is independent of N).

Following on from previous gas phase simulations of shear flow [21] we investi-
gate the ccfs at the low density LJ state, p = 0-1 and T = 2-5. At low density there is
no string phase so that many of the distinctive features associated with shear think-
ing at liquid density are lost. The same ccfs appear in the gas phase, again manifest-
ing time irreversibility. (The SLLOD ccfs are more pronounced but basically have
the same form.) The time correlation function, {5 {0)dx(t))>, which in the absence of
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Figure 2. Scattergrams for 3D sheared LJ fluids at the 3D LJ state p = 0-8442, T = 0-722
with N = 500 using the PUT and SLLOD algorithms. The projections of the centres
of the L1 particles onto the YZ plane are shown. To facilitate the observation of any
long-range structure, the real MD cell and surrounding 8 images are given. (a) y = 3-0,
SLLOD, and (b) = 20, PUT, r, = 2:0.

shear flow is zero at all times, t, is shown in figure 3, for the gas phase state using
the SLLOD algorithm,

Table 1 shows that the amplitude of these new cross correlation functions, ccfs,
{v(0)0,{0)> is approximately proportional to the extent of shear thinning
(n = 3-51 01 for y = 0). The ccfs are therefore a microscopic probe of this impor-
tant macroscopic property. This may lead uitimately to spectroscopic probes of
non-newtonian rheology.
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Figure 3. The peculiar velocity time correlation functions (B0} {t)> (solid line) and
{2 {0)0(t)) (squares) using SLLOD at the 3D LI N = SO0 state, p =0-1, T = 2-5 and
y=S5.

We now consider the transient response of simple liquids to shear flow suddenly
applied at time ¢ = 0, averaged over several thousand distinct starting phase points.
They were performed with an assumed profile thermostat. The phase space map-
pings devised by Morriss and Evans were used [11]. f I, = (x, y, 2, p,, p,, P.), the

co-ordinates and momenta of an arbitrarily chosen particle, then three other starting
phase points can be generated from this,

l'-2 =(~x, =Y 2, Pxs Py>» pz)’
r3 = (—X, Ys 2, —Dxs P,, P,),

rt = (—X, Ys 2, Pxs —Py> pz)-

This operation is applied to all molecules in the cell. Each of these operations gives
a different response when subjected to a shear strain rate, dv,/dY.

Table 1. Ensemble averages for steady state shear PUT simulations at p = 0-8442,
T =0-722 using N = 500.

3 025 0-50 10
(BH0)5,(0)) —0017 —0-038 -0078
(PyAO)P L AO) -24 -4 —64
(PrxO)Pr0)> =255 -737 —2449

(P OP0)>  —269 —788 —~2618
(PLAOP (0>  —248 —645 ~1886

n 271 2-44 211
CPrx> 0-44 0-73 1-40
Py 0-47 078 i-50
(Pyp> 0-44 0-65 109
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Figure 4. The stress responses, Py, {t), of p = 0-8442 and T = 0-722, N = 256 liquids sub-
jected to shear strain rates applied at time t = 0: (a) y = 025, —; (b) y = 0-5, (J;

and (c) 7 = 1-0, A.

The transient responses, Pyy , for pure shear applied to the near triple point state
are given in figure 4. The viscosities obtained at dv,/dY = 0-25, 0-5 and 1-0 are 2-80,
2:46 and 2-13 + 0-03. We used up to 1040 x 4 distinct NEMD transient responses.
The viscosities are statistically indistinguishable from those obtained in an earlier
steady state SLLOD NEMD study [17]. The TCF route to the Py, response using
(8) and the same number of transients was found to be statistically inferior. An
example of the Py, response at a shear rate of 1-0 is given in figure 5. The pressure
tensor component, Py, , responses for dv,/0Y = 0-25, 0-5 and 1-0 are given in figure
6. The Pxx exhibits a pronounced ‘overshoot’ at the largest shear rate considered,
reflecting the structural changes occurring in the fluid during the creation of non-
Newtonian state. Some structural change must be a feature of a decrease in shear
viscosity. The overshoot is an indicator that this is taking place on a timescale
comparable to that of the shear stress relaxation time. However, an overshoot does
not necessarily accompany shear thinning, as is evident in the Py, responses from
the two lower shear rates considered in figure 6.

., 3.2. Elongational flow

We now consider the transient elongational strains applied to the near triple
point state. The phase space mappings were chosen to zero the sum of the normal
pressure components at ¢t = 0 using the combination of normal pressures from (26),

rz =(_y’ —X, 2, =Px> —Py> pz)’
r3 =(—Z, —X, =Y, —Pz» —Px» _py)’

Other permutations will also achieve this objective.

Making use of two phase space mappings we employed typically 800 x 3 unique
starting points in phase space with a profile unassumed thermostat. We considered
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Figure 5. The stress responses, Py{t), of p = 0-8442 and T = 0-722, N = 256 liquids sub-
jected to a shear strain rate applied at time ¢ =0, $ = 10, ——, direct response and

the transient time correlation function route of (6), (1.
a selection of y; with §y = 1, 8, = —1/2 and §; = —1/2. The expansion of the MD
cell in the X direction leads to a decrease in Py, . The contraction in the dimensions

of the MD cell in the Y and Z directions creates an increase in Py, . (The equi-
librium pressure at this N = 256 state point is 0-100 4 0-004. The equilibrium total
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Figure 6. The normal pressure response, Pxylt), of p = 0-8442 and T = 0722, N = 256
liquids subjected to shear strain rates applied at time t = 0: (a) y = 0-25, —; (b)

$=050;and (c)y = 1-0, A.
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Figure 7. Elongational flow with dy =1, §,=—1/2 and é,= —1/2. dv, /0y =0. The
normal pressure responses, P (1), of p = 0-8442, T = 0-722, ; = 0-197 and N = 256
liquids subjected to elongational strain rates applied at time ¢ = 0: (@) Pyy, ——; (b)
Pyy, 0;and (c) Pz, A

internal energy per particle is —5-020 £+ 0-001.) Figure 7 shows the time develop-
ment of the change in P,, as a result of the elongational strain, $; = 0-197. We note
using table 2 that, in this non-newtonian regime the decrease in Py, becomes less
than the increase in Py, or P,, with increasing y;. This reflects the weakness of
fluids to extension when compared to compression.

We prefer to use 15/3 when discussing the elongational viscosity because in the
$r — 0 limit then the Navier-Stokes equation gives n = n,/3 [9]. This is known as
Trouton’s rile in the rheological community. At finite strain rates there is no rigor-
ous link between n and n; because the two types of strain cause structural changes
of different symmetries. (The newtonian viscosity at this state point is 3-5 4+ 0-1
[17].) Figure 8 presents the derived Pyy — Pyy/2 — P,,/2 and those from y, = 0-049
and 0-098. The derived n,/3 are 3-37, 2-88 and 2-70 + 0-03 for }, = 0-049, 0-098 and
0-197, respectively. We therefore are within an elongational viscosity thinning
regime, equivalent to a shear rate < 0-25 for shear thinning. The elongational vis-
cosities fit reasonably well to a 71/ power law. Although the volume and kinetic
energy (‘ temperature’) of the MD cell does not change during the elongation, there
is a noticeable change in the ‘thermodynamic’ state of the system. This is evident in
the total energy per particle responses for the above three $, plotted in figure 9.

3.3. Elongational and shear flow

We now consider the effects of simultaneously applied shear and elongational
strain rates. Both algorithms present no problems when used concurrently. We were
not able to devise phase space mappings that would simultaneously satisfy shear
and elongational symmetries. In response, we used the same (two) mappings as for
the elongational flow. The details of the results of these simulations are summarised
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Figure 8. Elongational flow with é; =1, §,= —1/2 and 8, = —1/2. dvy/0y =0. The
normal pressure responses, Pyx(t) — Pyy(t)/2 — P3t)/2, of p = 0-8442, T = 0-722, and
N = 256 liquids subjected to elongational strain rates applied at time t = 0: (a) ¥, =
0049, ——; (b) 7y = 0-098, (1; and (c) 3 = 0-197, A.

ve ©Smel8., in table 2. These combined flows, which are to a certain extent conflicting, produce
NN Amdddadd many cross-effects, highlighted in the discussion below.

First, we will consider extension in the streaming direction of the shear flow. The
strain distortions are defined by $ (=0v,/dY) and 6y =1, 6, = —1/2 and §, =
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"6 Beeld PARN Figure 9. Elongational flow with 6y =1, 8, = —1/2 and é; = —1/2. dv,/dy = 0. The total
) energy per particle responses, E(f), of p = 0-8442, T = 0722, and N = 256 liquids

subjected to elongational strain rates applied at time t = 0: (@) y = 0-049, —; (b)
¥r = 0098, [1; and (c) 7y = 0-197, A.
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—1/2. In figure 10 the P, (t) for a selection of j; are given. In the figure t =0
coincides with the commencement of application of the two types of strain rates. At
(# =01, y = 0-0246), we have a ¢t — oo asymptotic P,, that yields n = 2-50 + 0-05,
which is significantly lower than the shear viscosity at this shear rate in the absence
of elongational flow (=3-0 4 01 [17]). Similarly at (y} = 0-25, y; = 0-0492), we have
n = 2-20 + 0-05, which compares with n =2-76 + 0-03 in the absence of elon-
gational flow. We ascribe this enhanced shear thinning to the action of the elon-
gational flow in ‘dynamically ordering’ the fluid along the stream lines of the shear
flow (X direction). The elongational flow facilitates the mechanism that causes shear
thinning in simple fluids. At 7 = 1-0 and j; = 0-197 we observe no plateau in
P, (t — oo) but a steady decline in magnitude beyond an initial ascent at short time
(t < 0-4). Under these circumstances it is not meaningful to characterize this flow in
terms of a ‘ viscosity * as there is no plateau in either the shear or elongational stress.
The response is purely viscoelastic. The plateaus in the shear and elongational
stresses coincide in time. Beyond the plateaus most of the simulations manifested a
decrease in the shear and elongational stresses, reflecting, unbounded structural
degradation.

Figure 11 reveals that there is a similar pattern in n; on the application of a
simultaneous elongation and shear of the same relative orientation. The induced
elongational viscosities are listed in table 2. We note that the elongational viscosity
at fixed y;, decreases when accompanied by shear flow.

In the limit of small shear rate (7 ~ 0-05) and elongation rate, (y; < 0-1), table 2
reveals that there is the greatest elongation enhancement in shear thinning
(n(y) < (0)). It would appear that for larger $; ~ 0-2 and y ~ 0-25 the two flows

combined do not produce such a dramatic relative decrease in each of the vis-
cosities.

0 1 2
t

Figure 10. A combination of shear flow, y = dv,/dY, and elongational flow with 6, =1,
6y = —1/2and 8, = —1/2. The P, responses of p = 0-8442, T =0-722, and N = 256
liquids: (a) ¥ = 1-0, #; = 0-197, , (b) 7 =025, 3 =0049, O; and (c) =01,
Pr = 0-0246, A
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Figure 11. A combination of shear flow, } = dv,/8Y, and elongational flow with é, = 1,
6y = —1/2 and 6, = —1/2. The Pyy ~ Pyy/2 — P,,/2 time responses of p = 0-8442,
T = 0-722, and N = 256 liquids: (a) = 1:0, 5 = 0-197, ——; (b) $ = 0-25, 3, = 0-049,
O;and (c) = 0-1, 5 = 0-0246, A.

Computations were also carried out with an orthogonal or perpendicular rela-
tive alignment of the two fluids, specified by: § (=0v,/0Y) and 6y = —1/2, 6, =1
and 6, = —1/2. This flow has the extension of the fluid taking place perpendicular
to the streaming (x) direction. This gives rise to the class of ‘perpendicular’ shear
and elongational flow combinations. We have considered these two classes of com-
bined flow in order to clarify the general trends. In any practical arrangement (e.g.
flow into a contraction), the flow will be a linear combination of these two (and
other) classes at different points in the flow field.

Table 2 reveals that this perpendicular flow combination has a quite different
effect of the shear viscosity. There is still $ induced shear thinning in n, when
accompanied by a finite ;. However, the elongational flow acts to diminish the
extent of shear thinning when compared with the unelongated sample. For example,
at y = 0-25 and §; = 0-049 n = 2-92, whereas at the same shear rate but y, =0 we
have n = 276 [17]. (Note n = 3-5 for y = 0.) The effect of this class of elongational
flow is to compress the particles in the streaming direction. This we suggest, over-
rides expansion in the y direction, leading to less shear thinning at finite § in the
presence of ‘orthogonal’ . We conclude that flow in the non-newtonian regime is
facilitated when the major streaming directions are parallel. The opposite trend is
evident for the perpendicular arrangement. The remaining flow arrangements (with
elongation in the z direction) and ‘compressional’ flows remain to be treated in a
future study. The state point dependence of these flow arrangements is also of
interest.

In figures 12 (a), and (b) we present the elongational and shear stresses for a fixed
shear rate and variable elongation rates with 6, = 1,8, = —1/2 and 6, = —1/2. We
note that at this y = 0-25 there is a plateau in the clongational stress but not shear
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Figure 12. A combination of shear flow, = dvy/dY, and elongational flow with 65 =1,
8y = —1/2 and 8, = —1/2. The pressure tensor responses for p = 0-8442, T = 0-722,
$ = 0-25 and N = 500 liquids. (@) Py (t), 7 = 0-0605, —; 3, = 0-121, (J; and j, = : .
0-173, A. (b) as for (a), except Pyy — Pyy/2 — P,;/2 are given. Figure ;3. i\ COl:b;
=1 an
3'= 025 and
stress; the elongational flow field dominates. In figures 13(a),(b) we present the jr=01472, ¢

elongational and shear stresses for a fixed shear rate and variable elongation rates
with §y = —1/2, 8y = 1 and §, = — 1/2. We again note that at this = 0-25 there is
a plateau in the elongational stress but not in the shear stress. In the limit of both
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large 7 and 9 we find that the behaviour of the P,, and Py, are closely linked. The
tendency of the 7 is to split the values of P, in sign according to the signs of §, (e.g.
in figure 14). The shear flow, in contrast, promotes all diagonal pressure tensor
components to become positive (e.g. see figure 15). The outcome in any simulation
depends on the relative magnitudes of y and jyr and the competition between the
somewhat conflicting preferences of the two flows.

Combined shear and elongational flow also produce an anomalous thermal
effect with induced heat flux. The Green—Kubo integral of the tensor correlation
function, <J(t)J(0)) provides scalar elements of the thermal conductivity [22]. The
two flows in the orthogonal configuration produce a heat flux analogous to the
Weissenberg effect for the diagonal components of the pressure tensor (e.g. figure
16). Pure shear, pure elongation and the shear/elongation arrangement, y (=dv,/dY)
and 6y =1, 6, = —1/2 and §; = —1/2, do not produce any noticeable heat flux.
The full D symmetry of shear and clongation together is D{"’ DV’ = D\ + D{"
+ D?. This accounts for the simultaneous presence of both diagonal and off-
diagonal elements. The full D symmetry of thermal conductivity is that of the
integral over the correlation function of the Irving/Kirkwood heat flux tensor J, i.e.
(DLPDM). Therefore the full D symmetry of thermal conductivity includes the full D
symmetry of combined elongational and shear flow, consistent with principle (3) of
GTSM. Symmetry indicates whether a process can occur but not that it will occur.
Therefore the failure of pure shear or elongation to create this heat flux is a demon-
stration of this fact.

The transient correlation functions for the elongation fluids manifest the sym-
metry splitting predicted by (10). In the absence of elongation or shear,
(Pxx(0)Pxx()> = {Pyy(O)Pyy(1)) = (PzA0)PA1)>. In contrast, with elongation
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Figure 14. A combination of shear flow, } = dv,/0Y, and clongational flow with é, =1,
6y = —1/2 and 8, = —1/2. The P, time responses of p = 0-8442, T = 0-722, and
N = 500 liquids with y = 0-25 and y; = 0-173: (@) Py, ; (B) Pyy, O; and (¢) Py,
A,
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SO,

t
Figure 15. A combination of shear flow, y = dv,/dY, and elongational flow with §, = —1/2,
dy =1and é, = —1/2. The P,_, time responses of p = 0-8442, T = 0-722, and N = 256
liquids with $ = 0-25 and §; = 0-0492: (@) Py, ; () Pyy, O;and () P, A.

these component correlation functions are split as given in figure 17, shown for
parallel and perpendicular arrangements of shear and elongational strain, in figures
17 (a), (b) respectively. (In these time correlation functions the quantity with time
argument, t = 0, is taken from the equilibrium ensemble, whereas the quantity at
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Figure 16. A combination of shear flow, y = dv,/3Y, and elongational flow with 6y = —1/2,
éy =1 and 6, = —1/2. The heat current J, time responses of p = 0-8442, T = 0-722,
and N = 256 liquids with ¥ = 0-25 and $; = 0-148: (@) J,, ——; (b) Jy, [J; and (¢) J 5,
A, )
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014 4

®)

Figure 17. Some transient time correlation functions, {(PL{0)P2(t)> for LJ states subjected
to simultaneous shear and elongational strain rates. The * denotes the perturbed state.
(a) 7 = 0vy/3Y = 0-25, and elongational flow with , = 0-0689, 6, = 1, 6y = —1/2 and
d;= —1/2, 3 x 720 segments, N =256. a= X, line, a=Y, [O; and a =2, A. (b)
% = dvy/0Y = 01, and elongational flow with y; =0-148, , = —1/2, 6, =1 and
8,=—1/2,N=25.a= X,linc,a=Y,0;anda=2Z, A.

t >0 is taken from the transient ensemble) If the accompanying shear rate is
sufficiently large then the (Py(0)Pyy(t)) # {PzA0)PzAt)> for oy =1, 6, = —1/2
and 6, = —1/2 elongation. The degeneracy between Y and Z directions from the
elongation is broken by the superimposed shear flow. This is evident in figure 17 (a).
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When the elongation dominates the shear flow then (Pyy(0)Py,(f)d ~
(PAOVP A1) in by = —1/2, 6y = 1 and 6, = —1/2 elongation, as shown in figure
17(b). In this case the shear rate is not sufficiently large to overcome the X and Z
degeneracy of perpendicular elongational flow.

4. Conclusions

In this report we applied group theory statistical mechanics to shear and elon-
gational flow. We have devised equations of motion that produce elongational flow
and enable us to extract the elongational viscosity. We have characterized the strain
symmetries leading to time disymmetric correlation functions. We discovered that
simultaneously applied shear and elongational flows produce a variety of coupled
non-newtonian viscous and viscoelastic phenomena. Also, within certain orienta-
tions of the flow fields there are induced heat currents caused by the reduced
symmetry of combined shear and elongational flow. These phenomena highlight the
shortcomings of present continuum modelling techniques which fail to incorporate
these many-body effects. These considerations will surely be important in repro-
ducing the complex flow-rate dependent stream-lines in converging flows involving
non-newtonian liquids [23].
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