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Abstract

Radiatively induced fermion resonance (RFR) is the resonance equivalent of the
inverse Faraday effect (IFE), which is the magnetization of matter by circularly
polarized radiation. The effect of gravitation on RFR is developed in this paper
by considering the spin connection of Einstein Cartan Evans (ECE) field theory
to be approximately dual to the tetrad. At spin connection resonance (SCR) the
effect of gravitation is amplified, so the resulting gravitational shift in resonance
frequency of RFR may become measurable. Similar considerations apply to all
other forms of resonant spectroscopy.
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15.1 Introduction

The inverse Faraday effect (IFE) is well known to be the bulk magnetization
of matter by circularly or elliptically polarized radiation. It is observable at
all frequencies in all materials, and on the simplest level, one electron. The
resonant equivalent of IFE is radiatively induced fermion resonance (RFR),
which is fermion resonance induced by a circularly polarized electromagnetic
field. Analogously, the resonant equivalent of bulk magnetization by a magnet
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(static magnetic field) is ESR or NMR. The resolution of RFR is much higher
than ESR or NMR, and the RFR technique has a characteristic chemical shift
pattern different from that of ESR or NMR. In this paper, Einstein Cartan
Evans (ECE) field theory [1]– [10] is used to investigate the effect of gravitation
on RFR and on atomic and molecular resonance spectra in general. In Section
15.2, the general theory is reviewed, particularly in respect to the ECE spin
field. In Section 15.3, levels of approximation are described in the solution of
the basic RFR equations, and in Section 15.4, spin connection resonance (SCR)
is described as a possible means of amplifying gravitational induced spectral
shifts so that they become observable in the laboratory.

15.2 General theory

Using indexless notation [1]– [10] for clarity of concepts, the effect of gravitation
may be measured through the equations:

F = d ∧A+ ω ∧A (15.1)

and
d ∧ F = µ0j (15.2)

where

j =
A(0)

µ0
(R ∧ q − ω ∧ T ) (15.3)

and
A = A(0)q (15.4)

F = A(0)T (15.5)

Here, the various differential forms are expressed without their indices [1]– [10]
so that the basic structure of the equations is revealed the most clearly. They
are as follows: F is the electromagnetic field, A is the electromagnetic potential,
ω is the spin connection, j is the homogeneous current, R is the curvature, q
is the tetrad, and T is the torsion. In these equations cA(0) is the primordial
voltage, and µ0 is the vacuum permeability in the SI. System of units. [11].

The spin connection resonance (SCR) equation is, from Eqs.(15.1) and (15.2):

d ∧ (d ∧A+ ω ∧A) = µ0j = A(0)(R ∧ q − ω ∧ T ) (15.6)

The effect of gravitation on the electromagnetic field is governed by j, the
homogeneous current of ECE theory. If there is no effect:

j = 0 (15.7)

and
d ∧ (d ∧A+ ω ∧A) = 0 (15.8)

In this case, translational and rotational motions are independent. The transla-
tional motion governs the gravitational field and the rotational motion governs
the electromagnetic field. Einstein Hilbert (EH) field theory is governed by
translational motion defined through the following Cartan geometry:

R ∧ q = 0 (15.9)
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T = 0 (15.10)

D ∧R = 0 (15.11)

Eq.(15.9) is the Ricci cyclic equation, and Eq.(15.11) is the second Bianchi
identity. The well known EH field equation is obtained from the second Bianchi
identity ( [11]) and Noethers Theorem. As can be seen from Eq.(15.10) there is
no Cartan torsion T in the EH theory. From Eqs. (15.9) and (15.10):

j = 0 (15.12)

self-consistently, because EH is a theory of gravitation upon which there is no
electromagnetic influence. Note that if R̃ be the Hodge dual [1]– [10] of R, then:

R̃ ∧ q 6= 0 (15.13)

The rotational motion defines the electromagnetic field by:

d ∧ F = 0 (15.14)

and its Hodge dual:
d ∧ F̃ = µ0J (15.15)

where:

J =
A(0)

µ0
(R̃ ∧ q − ω ∧ T̃ ) (15.16)

is the inhomogeneous current of ECE theory. For rotational motion:

R ∧ q = ω ∧ T (15.17)

R̃ ∧ q = ω ∧ T̃ (15.18)

and
jrotation = j̃rotation = 0 (15.19)

but from Eq.(15.13)

J =
A(0)

µ0
(R̃ ∧ q)translation 6= 0 (15.20)

Eqs.(15.14) and (15.15) give the ECE laws [1]– [10] of electrodynamics unaf-
fected by gravitation. Eqs.(15.17) and (15.18) indicate that for pure rotational
motion the rotational curvature R is the dual of the Cartan torsion T , and the
tetrad is the dual of the spin connection [1]– [10].

From Eqs.(15.6) and (15.8) it is seen that the influence of gravitation on
electromagnetism is to change A and ω through the presence of j. This change
also introduces the possibility of SCR through Eq.(15.6) [1]– [10] and its Hodge
dual. If the effect of gravitation is very weak, (as in the laboratory), then, for
rotational motion, ω is dual to A in Eq.(15.6) to an excellent approximation.
We may thus consider the effect of gravitation to be a change in A produced by
j. The ECE spin field is defined by [1]– [10]:

B(3)∗ = −igA ∧A∗ (15.21)
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where A∗ is the complex conjugate of A, and where:

g =
κ

A(0)
(15.22)

where κ is, in free space, a wave-number. Thus B(3) (switching to vector nota-
tion) is changed by gravitation, and the RFR resonance frequency is shifted by
gravitation. At resonance from Eq.(15.6) it is seen that this RFR shift is greatly
amplified, so may become measurable in the laboratory. Similar considerations
apply for all types of atomic and molecular spectroscopy. We may also bring
into consideration quantum electrodynamics (QED) through the ECE Lemma
applied to A:

�A = RA (15.23)

where:
R = −kT (15.24)

Here � is the d’Alembertian, R is the scalar curvature, k is Einsteins constant
and T is the index contracted canonical energy-momentum density. The latter
in ECE contains in general contributions from all fields and interaction terms.

15.3 Levels of approximation in IFE and RFR

In general relativity both effects originate in the ω ∧A term of:

F = d ∧A+ ω ∧A (15.25)

and there are various levels of approximation that can be used to evaluate ω∧A:
classical, semi-classical, special relativistic QED, and general relativistic ECE.
For rigorously objective physics [1]– [10] general relativity must be applied to
all equations and concepts without exception. This is the basic ECE philosophy
needed to produce a generally covariant unified field theory. For electromag-
netism free of gravitational influence the spin connection is dual to the potential,
defining the ECE spin field. The IFE and RFR follow directly from the spin
field, which in vector notation in the complex circular basis [1]– [10] is defined
as follows:

B(3)∗ = −igA(1) ×A(2) (15.26)

The IFE is magnetization due to the radiated spin field B(3), and RFR is
resonance due to B(3). Analogously, bulk magnetization is due to a static
magnetic field, and ESR and NMR are resonance phenomena due to a static
magnetic field. In free space (no interaction with matter such an electron), the
spin field is defined [1]– [10] by:

B(3) = B(0)k = κA(0)k (15.27)

where:
g =

κ

A(0)
(15.28)

The conjugate product of non-linear optics [1]– [10] is defined by:

A(1) ×A(2) = A×A∗ (15.29)
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where A∗ is the complex conjugate of A. When B(3) interacts with matter, on
the simplest level an electron, then:

g → g′ (15.30)

where g′ is to be determined as follows from dynamics. The IFE is the magne-
tization:

M (3) =
1
µ0

B(3) = −igA(1) ×A(2) = g′A(0)2k (15.31)

The factor A(0)2 can be related to the power density I (watts per square meter)
of the electromagnetic field using the standard optical equation [12]:

A(0)2 =
µ0

c

(
I

ω2

)
(15.32)

Therefore:

M (3) =
g′

c

(
I

ω2

)
k (15.33)

The factor g′ must also be calculated from general relativity in a fully self-
consistent development. It must be calculated from the ECE wave equation in
the presence of interaction between the electromagnetic field and one electron
[1]– [10]:

(γa(i~∂a − eAa)−mc)qc = 0 (15.34)

where γa is the Dirac matrix, ~ is the reduced Planck constant, e is the charge
on the electron, m is the mass of the electron, c is the vacuum speed of light
and qc is the tetrad. In the absence of interaction between the fermion and the
gravitational field this equation reduces to the well known Dirac equation [1]–
[10]:

(γµ(i~∂µ − eAµ)−mc)ψ = 0 (15.35)

with the minimal prescription used to describe the interaction between the free
fermion and the electromagnetic potential. This equation is well known to be
the basis of QED and to successfully describe the Zeeman effect through the
half integral spin of the fermion. It is the basis of ESR and NMR. In the non-
relativistic quantum limit Eq.(15.35) reduces to the Schrödinger-Pauli equation:

Hψ = Eψ (15.36)

in which the hamiltonian is described using the Pauli matrices:

H =
1

2m
σ · (p + eA)σ · (p + eA∗)σ + V (15.37)

Here p is the classical momentum, A is the classical vector potential, σ denotes a
Pauli matrix and V denotes the potential energy. For a static magnetic field [1]–
[10]:

Hψ =
e~
2m

σ ·Bψ (15.38)

and for an electromagnetic field:

Hψ =
µ0ce

2

2m

(
I

ω2

)
σZψ (15.39)
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Electron spin resonance (ESR) is described by:

~ωres =
e~
2m

(1− (−1))B (15.40)

with resonance angular frequency:

ωres =
e

m
B (15.41)

RFR is described by [1]– [10]:

~ωres =
µ0ce

2

2m

(
I

ω2

)
(1− (−1)) (15.42)

with resonance angular frequency:

ωres =
(
µ0ce

2

~m

)
I

ω2
(15.43)

The IFE can be approximated by classical special relativistic limit of Eq.(15.35),
which is the special relativistic Hamilton Jacobi equation [1]– [10]:

(pµ − eAµ)(pµ − eA∗µ) = m2c2 (15.44)

The solution of Eq.(15.44) for N electrons in a sample volume V is:

B
(3)
sample =

N

V

µ0e
3c2

2mω2

(
B(0)

√
m2ω2 + e2B(0)2

)
B(3) (15.45)

In the limit:
mω � eB(0) (15.46)

we obtain:

B
(3)
sample = µ0M

(3)
sample →

N

V

(
e3c

2m2

)
I

ω2
k (15.47)

Comparing equations (15.33) and (15.47):

g′ =
N

V

e3c2

2m2
(15.48)

in this approximation.

15.4 Spin connection resonance

In the presence of gravitation the key resonance equation is:

d ∧ (d ∧A+ ω ∧A) = µ0j (15.49)

In the off resonant condition the effect of gravitation in the laboratory is very
small, so to an excellent approximation, and for rotational motion [1]– [10]:

ω∧ = −gA (15.50)
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Thus Eq.(15.49) becomes:

d ∧ (d ∧A− igA ∧A∗) = µ0j (15.51)

For circularly polarized radiation in free space [1]– [10];

d ∧A = −igA ∧A∗ (15.52)

so:
d ∧ (d ∧A) =

µ0

2
j (15.53)

Therefore there are equations such as:

d ∧B(3)∗ =
µ0

2
j (15.54)

The effect of gravitation is to make B(3) space and time dependent, for example
to make it precess in a cone as follows. Considering the space part of Eq.(15.54):

∇×B(3) =
µ0

2
j (15.55)

produces the precessional equations:

∂B
(3)
Z

∂Y
−
∂B

(3)
Y

∂Z
=
µ0

2
jX (15.56)

∂B
(3)
X

∂Z
−
∂B

(3)
Z

∂X
=
µ0

2
jY (15.57)

∂B
(3)
Y

∂X
−
∂B

(3)
X

∂Y
=
µ0

2
jZ (15.58)

Resonance equations can be derived from Eqs.(15.56) to (15.58) as follows. At
resonance, the B(3) field would be greatly amplified, meaning that the RFR line
would be shifted enough by gravitation for the shift to become measurable in
the laboratory. This might lead to a practical way of measuring the effect of
gravitation on a spectrum in the laboratory. At present this is only possible by
astronomy (red shifts for example).

Differentiating Eq.(15.55):

∂2B
(3)
Z

∂Y 2
− ∂

∂Y

(
∂B

(3)
Y

∂Z

)
=
µ0

2
∂jX
∂Y

(15.59)

This becomes a resonance equation under the mathematical conditions:

∂

∂Y

(
∂B

(3)
Y

∂Z

)
= −κ2

0B
(3)
Z (15.60)

i.e.:
B

(3)
Y = −κ2

0

∫∫
B

(3)
Z dZdY (15.61)

and
∂jX
∂Y

= j(0) cos(κY ) (15.62)

under which Eq.(15.59) becomes the undamped oscillator equation:

∂2B
(3)
Z

∂Y 2
+ κ2

0B
(3)
Z =

µ0

2
j(0) cos(κY ) (15.63)

At SCR from this equation, B(3)
z is greatly amplified.
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