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Abstract

In a unified field theory classical and quantum electrodynamics must be gen-
erally covariant, and not Lorentz covariant as in the contemporary standard
model. This means that electrodynamics must be objective under the general
coordinate transformation: equivalently the effect of gravitation on electrody-
namics must be considered. As an illustration of this general principle the
Lorentz force law is derived from a general coordinate transformation of the
torsion tensor of standard differential geometry. In the limit of special relativity
the general coordinate transformation becomes a Lorentz transformation and
the Lorentz force law is recovered in the absence of gravitation.
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16.1. INTRODUCTION

16.1 Introduction

In the contemporary standard model neither classical nor quantum electrody-
namics is an objective investigation in natural philosophy. In consequence the
effect of gravitation on electromagnetism cannot be investigated in the stan-
dard model, a major weakness of contemporary physics. Recently an objective
or generally covariant unified field theory has been developed [1]– [20], a theory
which shows how gravitation and electromagnetism may be able to influence
each other mutually. In this paper the Evans unified field theory is illustrated
through the general coordinate transformation of the torsion tensor in differen-
tial geometry [21]. Within a factor A(0), the torsion tensor is the electromag-
netic field tensor. In Section 16.2 the generally covariant form of the Lorentz
force law is obtained through a general coordinate transformation of the elec-
tromagnetic field tensor. In the limit of special relativity Section 16.3 shows
that Lorentz force law of the standard model is obtained as a well defined limit
of the generally covariant, or objective, Lorentz force law of the Evans unified
field theory. The correctly objective Lorentz force law shows how gravitation
affects the Lorentz force law of the standard model.

16.2 General Coordinate Transformation

The vector transformation law of general relativity shows that the vector field:

V = V µê(µ) (16.1)

is invariant under the general coordinate transformation

V µ′

=
∂xµ′

∂xµ
V µ, ∂µ′ =

∂xµ

∂xµ′
∂µ (16.2)

where

ê(µ) = ∂µ. (16.3)

Here V µ denotes the vector components [21] and ê(µ) the set of basis vectors.
The vector components xµ are those of the position four vector, and ∂µ is
the partial derivative four vector. Therefore Eq.(16.3) defines the coordinate
basis. In Eqs.(16.1) to (16.3) the primed frame is related to the unprimed
frame through the general coordinate transformation. The coordinate basis
(3) is used conventionally [21] in gravitational general relativity. This is the
Einstein Hilbert variation of general relativity, where the fundamental field is
the symmetric metric tensor. The Lorentz transform of special relativity is the
special case of Eq.(16.2) where:

V µ′

= Λµ′

µV
µ, xµ′

= Λµ′

µx
µ (16.4)

Here Λµ′

µ is the well known [21] Lorentz transform matrix.
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The tensor transformation law of general relativity [21] is

T
µ′

1
...µ′

k

ν′

1
...ν′

l

=

(
∂xµ′

1

∂xµ1

. . .
∂xµ′

k

∂xµk

)(
∂xν

∂xν′
. . .

∂xνl

∂xν′

l

)
T µ1...µk

ν1...νl
(16.5)

in a notation which can be built up from the notation of Eq.(16.1). An important
example of Eq.(16.5) is the metric transformation law:

gµ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′
gµν (16.6)

Eq (16.6) is the fundamental axiom of relativity theory [1]– [21], a tensor trans-
forms generally and covariantly, producing a new tensor. In Eq. (16.6) the
tensor is the fundamental field, implying that the field is covariant to an ob-
server moving arbitrarily with respect to another observer. In the Evans unified
field theory this axiom is applied to all radiated and matter fields [1]– [21] self
consistently using Cartan geometry.

The covariant and exterior derivatives [21] of a vector transform covariantly
in relativity theory, whereas the ordinary partial derivative does not. For ex-
ample, the covariant derivative transforms covariantly as:

Dµ′V ν′

=
∂xµ

∂xµ′

∂xν′

∂xν
DµV

ν (16.7)

provided that the Christoffel symbol transforms as:

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν′

∂xν
Γν

µλ − ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν′

∂xµ∂xλ
. (16.8)

The Christoffel symbol itself does not transform as a tensor, as is well known.
As a final example the torsion tensor [1]– [21] transforms covariantly as a three
index tensor:

T λ′

µ′ν′ =
∂xµ

∂xµ′

∂xν

∂xν′

∂xλ′

∂xλ
T λ

µν . (16.9)

In the unified field theory [1]– [20] the Palatini variation of general relativity
is used, a variation in which the fundamental field is the tetrad, a vector-valued
one-form of Cartan differential geometry [21]. The general transformation law
for forms is:

T a′µ′

b′ν′ = Λa′

a

∂xµ′

∂xµ
Λ b

b′

∂xµ

∂xν′
T aµ

bν (16.10)

where Λa′

a is a Lorentz transform defined in the tangent spacetime by [21]:

ηa′b′ = Λ a
a′ Λ b

b′ ηab (16.11)

Here Λ a
a′ and Λ b

b′ are inverse Lorentz transforms. From Eq.(16.10) a vector
valued one-form Xa

µ transforms as:

Xa′

µ′ = Λa′

a

∂xµ

∂xµ′
Xa

µ (16.12)
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v where the Lorentz transform Λa′

a in the tangent spacetime is defined by [21]:

xa′

= Λa′

ax
a. (16.13)

If µ is fixed then:
Aa′

µ = Λa′

µA
a
µ (16.14)

and if a is fixed:

Aa′

µ =

(
∂xµ

∂xµ′

)
Aa

µ. (16.15)

The torsion form in Cartan differential geometry is a vector valued two-form
defined by:

T a
µν = ∂µq

a
ν − ∂νq

a
µ + ωa

µbq
b
ν − ωa

νbq
b
µ (16.16)

where qa
µ is the tetrad and where ωa

µb is the spin connection. The torsion form
transforms as a tensor:

T a′

µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
T a

µν . (16.17)

In the unified field theory [1]– [20] the electromagnetic field tensor is also a
vector valued two-form defined by:

F a
µν = A(0)T a

µν (16.18)

where A(0) is the vector potential magnitude. The generally covariant Lorentz
force law is therefore expressed most generally as:

F a′

µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
F a

µν . (16.19)

The mutual effect of gravitation and electromagnetism within this law is con-
tained within Eq.(16.19). For fixed a:

F a
µ′ν′ = Λa′

a

∂xµ

∂xµ′

∂xν

∂xν′
F a

µν (16.20)

and so for fixed a the generally covariant Lorentz force law is described by the
metric transformation law (16.6). In order to calculate the effect of gravitation
on the Lorentz force law we need know only the metric transformation law for
a given metric, defined by:

gµν = qa
µq

b
νηab. (16.21)

Here ηab is the Minkowski metric [21] of the tangent spacetime.

16.3 Special Relativistic Limit

In the special relativistic limit of Eq.(16.20) we obtain the Lorentz transforma-
tion:

F a
µ′ν′ = Λµ

µ′Λ
ν
ν′F a

µν . (16.22)
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for each index a. The latter is a polarization index. Since a appears on both
sides of Eq.(16.22) it may be omitted for ease of notation. The conventional
Lorentz transform of the electromagnetic field [22] is therefore obtained:

Fµ′ν′ = Λµ
µ′Λ

ν
ν′Fµν . (16.23)

In vector notation it is well known [22] that Eq.(16.23) is:

E′ = γ
(
E +

v

c
×B

)
+ · · · (16.24)

B′ = γ
(
B − v

c
×E

)
+ · · · (16.25)

where E denotes electric field strength in volt m−1 and B is magnetic flux
density. Here

γ =

(
1 − v2

c2

)−1/2

(16.26)

originateS in the Lorentz transform matrix of special relativity. The Lorentz
force law in S.I. units is:

dp

dt
= e

(
E +

v

c
×B

)
(16.27)

where p is linear momentum and e is electric charge, and the Lorentz force law
holds at non-relativistic velocities, where

γ ∼ 1 (16.28)

From Eq.(16.23) the magnetic induction due to the Lorentz transformation at
non-relativistic velocities is [22]:

B =
e

c

v × r

r3
(16.29)

which is the Ampère Biot Savart law. It is seen that the Lorentz force law is
built up from a sum of E and v

c ×B in Eq.(16.24) in the non-relativistic limit.
The correct laws of electrodynamics are therefore obtained from the Evans

unified field theory and from the generally covariant transformation (16.19) of
the electromagnetic field tensor. The effect of gravitation on these well known
laws of electrodynamics may therefore be calculated for a given metric.

Finally, in quantum electrodynamics [1]– [20] the tetrad is the fundamental
field and the tetrad transforms according to Eq.(16.12).
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