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ABSTRACT 

A new general theory of particle collisions is developed using the ECE fermion 

equation, or chiral representation of the Dirac equation, and the theory applied to low energy 

nuclear reactors with use of quantum tunnelling through the Coulomb barrier. Two colliding 

particles are considered to produce many products ofthe collision, so this is a general theory. 

Many new measurable phenomena appear in general, because the theory can be reduced to the 

format of an ECE fermion interacting with an electromagnetic field. This precise and well 

known theory is generalized for the interaction of any two particles, giving any number of 

products. 
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1. INTRODUCTION 

In recent papers of this series a new development has been initiated of particle 

collision theory using the duality equations of ECE theory { 1 - 10}. In general two particles 

such as an electron and positron can collide to give many products, depending on the energy 

of the initial particles. There can be scattering, annihilation, and nuclear fusion. Low energy 

nuclear reactors (LENR) achieve fusion at low energies. Papers such as UFT226 ff. of 

www.aias.us give a first explanation ofLENR using quantum tunnelling theory based on the 

Schroedinger equation. Therefore it is an advantage to reduce the equations of particle 

collision theory to the Schroedinger equation. Thereafter a description of all kinds of particle 

collision is achieved with incorporation of quantum tunnelling theory as in UFT226 ff. 

In Section 2 the equations of conservation of energy and momentum are considered 

of the collision of two particles to give many products. In a well defined low energy 

approximation these equations are reduced to a Schroedinger equation, from which quantum 

tunnelling may be inferred as is well known { 11}. In the SU(2) basis the equations of 

conservation of energy and momentum translate to a fermion equation, or chiral 

representation of the Dirac equation. Using the fermion equation many new phenomena of 

particle scattering can be predicted, using calculational methods parallel to the well known 

case of an ECE fermion interacting with an electromagnetic field. The semi classical 

description of the latter type of interaction gives many precise results, notably the g factor of 

. I 
the ECE fermiOn, the Lande factor, the Zeeman effect, ESR, NMR, MRI, the Thomas factor, 

spin orbit coupling and the Darwin shift, all of which have been observed experimentally to 

great precision. The use of a complex vector potential gives five more terms in general, one 

of which is radiatively induced fermion resonance (RFR) { 1 - 10}. Parallels to all these 

phenomena occur in particle collision theory and low energy nuclear reaction theory. 
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In Section 3 some of these results are discussed and evaluated numerically . . 

2. GENERAL THEORY AND THE ECE FERMION EQUATION. 

The collision of two particles in general can be described by: 
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which are the equations of conservation of total energy and linear momentum. There is also 

conservation of total angular momentum and total charge. Each of the energy and momentum 

terms in Eqs. ( \ ) and ( J. ) obey the Einstein energy equation, for example: 
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where m is the mass of the particle of energy E and momentum p . This may be a -
scattered particle, the product of annihilation, a particle created in the collision process, or the 

product of a nuclear fusion. The Einstein energy equation may be expressed as the ECE 

duality equation: 

~ H ~ 
where ~ is the Lorentz factor and W the angular frequency associated with the energy E . 

If many particles are produced by the collision then: 
I I I (:::,) I -t E.) [~ ~ - \::, + + -

I I I I {&) f -:. f, + f~ t - + f~ -
and each particle has its energy and linear momentum. In the usual theory of Compton 

scattering for example: J (-,) c, - V,hc_, -
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for an initially stationary electron, and a "massless" photon is said to collide with the electron. 



Eq. ( 3 ) can be written as: 

1.e. as: 

so the equation may be linearized as: 
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The non relativistic kinetic energy may be obtained from this equation in the low energy 

approximation { 11 } : 

so: 
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The Schroedinger equation is obtained as usual using: 

so: 
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This is the required quantized description of the general,particle collision process described 

by Eqs. ( \ ) and ( J. ). One ofthe many predictions ofthe Schroedinger equation is 

quantum tunnelling, which may be applied to LENR as in UFT226 ff. on www.aias.us. That 



theory can be generalized conceptually to any process involving the collision of two particles, 

notably scattering and annihilation. 

For Compton scattering: 

so the Schroedinger equation becomes: 

A nuclear potential may be added to Eq. ( \ ~ ) as discussed in UFT226 ff. and a 

transmission coefficient calculated. For example this may be a Coulomb potential, a Woods 

Saxon potential, or a combination of both, and the theory developed in that way. So for 

Compton scattering the translation rule is: 
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in the non relativistic quantum approximation. 

The ECE fermion equation may be obtained from Eq. ( 3 ) using the Pauli 

matrices of the SU(2) basis { 1 - 11} as follows: 
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This equation may be developed to give many new phenomena of particle collision theory 

and low energy nuclear reaction theory. In the low energy approximation ( \ ~ ): 
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If p is real valued: 
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and Eq. ( \.5 ) is obtained again. However if p is complex valued: 
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A new observable effect occurs via the hamiltonian : 
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which translates into the RFR hamiltonian { 1 - 1 0} with the minimal prescription: 
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For example if: 
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the hamiltonian ( )S ) reduces to: 

\-\) ~ 

and resonance can be observed between the two states of 
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Using: 
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the Schroedinger equation ( \ ~ ) reduces to: 

For the "massless" photon: 
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which is the Compton formula: 
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in the approximation: 
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equivalent to the approximation ( ~ J ). This type of resonance could be searched for using 

a circularly polarized electromagnetic field scattered off an initially stationary electron. 

Eq. ( :l \ ) can be written as: 
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This equation has the same structure as the fermion equation describing the interaction of a 

provided that: - / f ...., \.: \ 
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So all the precise results obtainable from Eq. ( ){, ) can be applied to particle collision 

theory. These results emerge from Eq. ( )fa ) in the format: 
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of a Schroedinger type equation: 

where the hamiltonian operator is: 
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All details are given in notes 248(5) to 248(10) accompanying UFT248 on www.aias.us. The 

hamiltonian can be analysed to give many well known observable effects, and the entire 

theory can be developed for particle collisions and LENR. 

There are three main hamiltonian operators summarized in the equation: 
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They are: 
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the second hamiltonian: 
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There are therefore many effects present in general, all of which can occur in particle ) 

collision theory and LENR with the translation ( j <6 ). The most well known result ofEq. 

using the standard physics definition of the magnetic flux density: 
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In ECE physics the structure is greatly enriched with the spin connection { 1 - 1 0}. Eq. ( ~ '\) 
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g1ves the g factor of the ECE electron, the Lande factor, ESR, NMR and MRI. There are 

parallel effects in particle collision theory and LENR which can be tested experimentally. 

As shown in all detail in Note 248(7) the use of a complex valued potential 

gives five new effects through the hamiltonians: 
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One of these is the RFR hamiltonian: 
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as discussed further in Note 248(7) in all detail. 

--

As discussed in notes 248(8) and 248(9) in all detail, the hamiltonian ( lt-S) gives 

spin orbit coupling and the Darwin shift and again there will be equivalents of these 

phenomena in particle collision theory andLENR. So it is possible to develop a 

comprehensive new theory of particle collisions. 

3. NUMERICAL DISCUSSION. 

Section by Horst Eckardt and Douglas Lindstrom 
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