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ABSTRACT 

A self consistent cosmology of all observable orbits is developed from the 

Minkowski metric. The orbit is derived directly from geometry, and various expressions 

deduced for the acceleration associated with the orbit, the acceleration also being a direct 

consequence of geometry. The Cartan tetrad and torsion are derived for the dynamic or phase 

dependent Minkowski metric by factorizing the latter into phase dependent Cartan tetrads. 

All orbits can be classified systematically with this method. 
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l..INTRODUCTION. 

In recent papers of this series { 1 - 10} a useful new cosmology has been 

developed on the basis of the Minkowski metric without using any of the concepts of 

Einsteinian or Newtonian cosmology. The Minkowski metric can be factorized into phase 

dependent Cartan tetrads to produce a Cartan torsion. The Cartan and Evans identities { 1 -

11} produce field equations of gravitation and magneto gravitation from the dynamic 

Minkowski metric. It has been well known for over half a century that the Einsteinian 

general relativity (EGR) fails completely to describe the great majority of features known 

from astronomy, notably the velocity curve of a spiral galaxy. The Newtonian dynamics also 

fails completely. These are well known experimental facts, so it is futile to claim that EGR is 

a precise theory when it fails completely for the vast majority of data. Recently { 1 - 10} 

many definitive theoretical refutations of EGR have been given and accepted almost 

unanimously as shown by accurate scientometrology. It is is known precisely how a theory 

such as ECE is accepted by building up accurate scientometrics over a decade. 

In the two preceding papers UFT232 and UFT233 a new cosmology has been 

suggested based on Ockham's Razor, the use of the simplest metric compatible with 

relativity - the Minkowski metric. Usually the latter is associated with special relativity in a 

flat spacetime with no connection. In some of the previous papers of this series of two 

hundred and thirty three papers and eleven volumes to date (www.aias.us), it has been shown 

that the Minkowski metric can be factorized into phase dependent tetrads that define a Cartan 

torsion. It has also been shown that the Minkowski metric gives the Einstein energy equation 

directly, and that the plane polar version of the metric gives an orbit directly. Any observable 

orbit can be described in terms of the ratio of the relativistic linear momentum p of an 

orbiting object to its relativistic angular momentum L. All orbits can be classified with this 

ratio. 
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In Section 2, various expressions are derived for the acceleration generated by any . 
observable orbit. The acceleration is shown to be a dir~ct consequence of the orbit, and the 

latter is a direct consequence of geometry in spacetime. The use of spacetime rather than 

space introduces dynamics. For the Minkowski metric the acceleration is always radially 

directed. This is also true for any metric of a spherically symmetric spacetime. In relativity 

theory, the orbit is geometry itself. In the earliest attempts to understand an orbit, for example 

by Kepler, Hooke and Newton, the orbit was described anthropomorphically in terms of a 

force between the orbiting object of mass m and another mass M. There was thought to be a 

force of attraction between m and M, and Hooke was the first to realize that for an elliptical 

orbit this force must be proportional inversely to the square of the distance between m and M. 

He pointed this out to Newton as described in John Aubrey's classic "Brief Lives". It was 

natural to think of M pulling m, but this is a completely incorrect viewpoint. This force needs 

to be counterbalanced in order for the object m to stay in orbit, and at this point the 

Newtonian dynamics fails { 12} as described in many textbooks. It incorrectly defines a 

centrifugal force from the rotational part of the kinetic energy. A force must be defined from 

a potential energy. EGR tried to remedy this situation by using the second Bianchi identity, 

but used the wrong symmetry for the connection, and incorrectly omitted torsion. It used a 

metric with unphysical singularities falsely attributed to Schwarzschild and in the late fifties 

was found to fail spectacularly in whirlpool galaxies. Section 2 remedies all these failings by 

using the ratio p I L for any orbit and by working out the orbital acceleration 

straightfowardly. This method immediately gets rid of unphysical fallacies such as the 

endlessly refuted "big bang" and non existent "black holes". These concepts (based entirely 

and simple mindedly on unphysical singularities) reduce modem physics to utter nonsense 

and are long overdue for the scrap heap of anthropomorphic obscurities .. 

In Section 3 the Minkowski metric is factorized straightfowardly into phase 
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dependent Cartan tetrads using fundamental and very well known ideas of Cartan geometry . . 
This factorization reveals a dynamic inner structure of_the Minkowski metric from which a 

Cartan torsion and Cartan identity can be defined. This procedure leads to field equations for 

gravitation and magnetogravitation using the Evans identity, an example of the Cartan 

identity using Hodge duals { 1 - 1 0}. 

Finally in Section 4 some graphical analysis is given based on the fact that the 

miscalled Schwarzschild metric leads to an overcomplicated and unphysical theory in 

comparison with the Minkowski cosmology. 

2. ORBITAL EQUATIONS AND ACCELERATIONS OF THE ECE I MINKOWSKI 

COSMOLOGY. 

In notes 234(1) and 234(2) accompanying this paper on www.aias.us Some 

more problems of EGR are discussed and a brief account given of conservation of energy and 

momentum. As usual these notes should be read in conjunction with the scientific paper. The 

most basic concept is the relativistic linear momentum, which is the mass m of the orbiting 

object multiplied by the relativistic linear velocity. Consider the plane polar coordinate 

system ( r, ~ ) describing any orbit in a plane. The position vector of the orbiting mass m 

is defined by: 

-
where e -< 

is the radial unit vector { 12}. The relativistic velocity is defined by: 

'V =- ~ "' ~~\ ~~ T < (M_ \Le -(~ 
~'t \v\--t) A~) .. 

because { 12} the coordinate system is itself dynamic and e depends on the proper time 
. _, 

r( . In Cartesian coordinates the relativistic velocity is: 



-~ 

and the relativistic acceleration is: 

- -cl'l 

-
ct f --J 
~c-

In plane polar coordinates however { 12} the unit vectors obey the equations: 

and: 

-- (~ 
I-l 

By use of the Leibnitz Theorem: 

2.et'!L4t 
- J:t 

+~(~ 
Using Eqns. ( S ) and ( b ) g1ves: 

Q "- ~ _( A_!'\; S-~ 
- tl~ "l A~) 

which is a pure kinematic result of general validity. It is equivalent to the result ( 

Cartesian coordinates. 

This general result can now be applied to the Minkowski cosmology. 

Consider the Minkowski metric in a plane in plane polar coordinates. It produces 
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the infinitesimal line element: ) ( 0 
J. c_J.·n"-) -_ n _1._ <)~.- \c 

cls.') -:. (') u ~ OJ. ~ . 

In relativity it is thought that the vacuum speed of light is a universal constant, so the 

foll.owing quantity is a constant: ( 

0 
) ( J IJ~ \:l () 

). A ~ JJ"~ - ~ J. - { ~ -l I I ( ~ a ~ ~(_ _ ~ -;. - 1.: ct~ . 
~ t,l~ cl:l J--c ~ l 

Therefore ili~oT~ vari:tion fJisT " ~ ~\I h J:r -='- O _ (t1 
d j ~ ~~ A~) . 

and the lagrangian: -(G) 

is an invariant. The Euler Lagrange equation is: 

b(~ 
where in this notation: 
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and the relativistic energy E: 

f -=- (~ f'...L) . ~ (\<t) 
el--l 

is a constant of motion, meaning that: 

tl~ "0- 0 - (t~ 
t\_'C 

L I Ji - ol ~-<' JB ~ If_ ~ 0 ~ ( "d0 
d; l J ( ~) kc )6 

Similarly: 

. so the angular momentum L: 

is also a constant of motion: 

elL ~ o. -
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These results can be applied to Eq. ( ~ ) to show that: . 

< ~ (M_ ~~(~r- Lr l~ -\- J b .---- ---- ) ~l ~'t :G- cl~ ~ kc ~ cl-r ( 

)l v- +- )l tr 0 -(~) 
-;.. 

') 

'~',...( 

so that the acceleration of the orbit is always radially directed. This result is also true for the 

metric: 

of any spherically symmetric spacetime. Therefore for any orbit in any spherically symmetric 

spacetime, its acceleration is always radial and always a property of geometry, i.e. of the 

metric itself. It is important to note that this acceleration does not need to be 

"counterbalanced" because the orbit is the path or geodesic of object mas dictated by the 

metric. This is the basic idea of relativity, and is completely different from the Newtonian 

point of view. In fact the latter does not describe an orbit because it fails to define correctly 

the centrifugal "force", needed to "counterbalance" the "force of attraction". 

The acceleration of any orbit in any spherically symmetric spacetime is 

therefore: 

(~ 
.~ - (d9 L g_< (\ --

~"(). ') 1 
Vh < 

and the Minkowski orbit is described by: 
~ (!c))- (~~ 

~ 
- ( -

where: 
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) f - y .... " 
1 l- 'irr...\' w. 

Dividing Eq. ( J) ) by Eq. ( j~ ) gives the orbit ( ~ <\ ) directly. 

Using the fundamental derivative definitions: 
L Lf -(>0 u l8 lE L ~ tK -:::. ---------- ) ) - ) J.j) - -- -- J et-c '(h{ 

tl_\ cU3 et-c 4_--c ~( 

then the derivative of r with respect to proper time "'t is: 

Its derivative in tum with respect to proper time is: 

%-(~ .. ir - (:k) 
~ s~ - .......--

- ltJ {ttl:\ 
£l~ 

~') I.e.: 

~~ ~ 
t\ \ ~ 

a ~ --- <) M - -- M ~ 
C-l--c Yh( 

So the acceleration with respect to any observable orbit of the universe is: 



-

This is a useful and important result because it describes all orbits, not just solar system 

orbits. 

If the orbit is an ellipse: 

~ -(}q) 
\ "?-

\ -\- (- ( oJ e 
then: 

) 
~~ ...... e -(~6) u E-( 

- . -,...---. 

~ !8 

where: 

so: 

---
which is the result given in UFT196 and note 234(4) QED. 

(6S e -:::_ L (~ - 1_ _( ~) 
E- ( 

For the ellipse: 

so the acceleration reduces to: 
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~-

where ~ is the half right latitude. The angular momentum in Eq. ( ~j) is a constant of 

motion and is defined as: 

where G./ is the angular velocity. So the acceleration is: 

..,_ - "'X)((.)J. ~(· 
-- ~ 

In the limit: - (~~) 

the Lorentz factor approaches unity, so: 

For a circular orbit: - (s~ 

so the acceleration is: 

~' Q -W r _, 

and is the familiar acceleration produced by a rotating frame of reference { 12}, known as the 

centrifugal acceleration. In ~CE theory { 1-1 0} it has been shown to be due to torsion. It has 

been shown here to be a special case ofthe general result ( ) ~ ). 
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1 

This analy · SIS can be extended to spherically symmet . 
line element: nc spacetime by considering the 

so: 

and the constants of motion are: 

\: .,_ AO\..c...' JS- L = y)-._('m . -(s.0 · 
-) -rA;t cl-r 

It follows that: ~ rh (~ \ J ~ A f'r..c.' I }:t_ ~_~c.")_~( ")(!iL \1 -{ ssl 
kt) lkt j A--Cj / 

from which the orbital equation is: 

(~)~~ (: 
\ - J ") 

- \.: - n.-_c_ 

A ;L L 

- (~£'\ 
cl , lo ~ L _(J$10 Defining: 

then: 

,..- I ,JL (. ) 

\: Vr\. 

4 
- ( ------~ 

\ --\;J 
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ForilieMil~);tric~ ( ~ ( (~) --( ~ 
which can be written as: 

- (~ ~) 
usmg: 

Therefore for the Minkowski metric: 

) 
( 

For the miscalled Schwarzschild metric: 

(\ -r\ -

) 

\-

-(s~ 

--r 
and the orbital theorem is needlessly complicated: ( ( \ ~ ) ~~ _ (64-'\ 

n,. 1 (J_ \-~ L-r-- . ~ 
(jJ. -::... ' - "} () 
~ J. ( 'o 
Jj} ()._ 

The Einstein energy equation ( ~ \ ) can be derived { 12} directly from the 

relativistic momentum: 

-
as is well known. It may also be derived directly from the Minkowski metric ( \ 0 ) by 



Expressing it as: 

using the definitions ofE, p and L, Eq. ( bb ) is: 
J. J. 1 1 ~ 

( ~ c f +- r\.... c. 

So the relativistic momentum and energy equation are expressions of the metric and therefore 

it follows that: 

and: 

so: ')_ 

- \ 
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From Eqs. ( ~ ~ ) and ( l) ) the acceleration may be defined as: 

L~ k ,e - L
1 1_ 

- ~~'l-;:; _," d~~ JJ -
i.e. in terms of p I L. The acceleration of any orbit may be expressed in this way. The ratio p I 

L may be defined as: /L ~ ( ( wr
1
)- (l~ 

f 
~ 

so: l-:1 ~ .R. -(19 a._ - - _,. -- clt -- )~ 
'). 

As in UFT232 and UFT233 the elliptical orbit may be expressed as: 

~ ~y (~ Stk
1 8 

( (~- (')(~-~~;_-~ --- ";) 

( ) 

where r 

J 
{ 

{.,-,..:~ 

is the minimum distance between m and M and where r is the maximum 
~~ ~~~ 

distance. These are the quantities usually used in cosmology. 

From Eqs. ( (, D ) and ( l S ) any orbit in Minkowski cosmology may be 

expressed as: 

and all orbits can be catalogues in terms ofv I c.; . For the elliptical orbit: 
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~)1 00- :f- lsi~Je -\-~)-h) 

and for the precessing elliptical orbit: 

In general any orbit can be expressed as: 

so: 

For a circular orbit: 

so: 

which is the familiar textbook result. 

_ ()~:'J s;._(x~) ~ :r<' -( ~0 

~ 1 ( 8j -l~') 

\)(ej+ '~ - (n) 

As in UFT232 and UFT233 the relation between Minkowski cosmology and the 

ideas of Hooke and Newton may be worked out by expressing the Minkowski orbit as: ( ·s) 
( 8))~ 00- _L (( ~- 1\-' ~ \__) - ~_/ 
\-z:j <4- ~) ?J <:l(<\'-L?)' .. 

Newtonian dynamics are vali~ for: 
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and use the idea: 

-(n) 

where E is the total non-relativistic energy and U the potential energy. The non relativistic 

kinetic energy is: 

-\ 
_( ~~) 

The total momentum in Newtonian dynamics is { 12}: 

~J(lli) 
which is the non-relativistic limit ofEq. ( )~ ). Using: 

it follows that Newtonian dynamics are described by { 12}: 

l%j~ - ~: (J~ 
L ~ _ ___,_ .~ { q~ 

< ') ( J.. n.. < ' ( ~ - IX) -L') 
i.e. by: 

-I 

Eqs. ( ~ S) of the Minkowski cosmology and ( ~) ofNewtonian dynamics are the same 

in the limit v << c if: 
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which is Eq. ( ~l ), QED. 
. 

This result means that Newtonian dynamics introduces the concept ofLf:, whereas 

Minkowski cosmology is based on geometry without t~e need for the concept of U: The 

concept of force in Newtonian dynamics is derived from "U: 

~ \ :::. -

In the Minkowski cosmology and in relativity there is no concept ofiJ., all is geometry. So 

Minkowski cosmology is preferred by Ockham's Razor, being the simpler and much more· 

powerful theory, able to rationalize all observable orbital data in the universe in terms of the 

simple ratio pI L. The concept of force appears to have been introduced by Kepler, and the 

inverse square law by Hooke, communicated to Newton in a letter. 

From Eqs. ( l\ ) and ( b 0 ), the acceleration of any orbit in the universe may 

be expressed in Minkowski cosmology as: 

--

This result shows the most clearly that the acceleration is a property of the orbit and of 

geometry, and is not the result of the anthropomorphic ideas of Kepler, Hooke and Newton. 

The acceleration is the result of the orbit, which exists due to the metric and geometry. In the 

seventeenth century it was entirely natural to think of the orbit as the result of the force, 

which was defined as the acceleration divided by m. the relativistic viewpoint was introduced 

by Einstein, and that part of his work is sound. It is most important to note however that 

neither Newtonian nor Einsteinian dynamics can describe the vast majority of astronomical 
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data, whereas the Minkowski cosmology developed here and in UFT232 and UFT233 can 

rationalize all orbital data in terms of p I L. 

where: 

-
So we arrive again at Eq.. ( ~ "'3 ) self consistently, QED. 

Th{~ );tio: ror~hri ~~em~:~etime ~·~) _ ( qJ 
from the metric ( SJ. ). If Eq. ( ~ ~ ) is used in Eq. ( '\S ) then the resultant acceleration 

f 

IS: 

L) 
q - ----:-

2; \/J. 

This is worked out by computer algebra in Section 4, and leads to a very complicated result 

as first worked out in preceding papers of this series { 1-1 0}, and is the sum of terms inverse 

square and inverse cubed in r. This is another clear refutation of Einstein's ideas. 
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In summary of this section, the following expressions have been derived for the 

so the elliptical orbit is described by: 

a.. -

f(_ 
-r 

J. e 
w -r 

3. CONNECTION AND TORSION OF THE DYNAMIC MINKOWSKI METRIC 

The Minkowski metric is defined in the Cartesian basis by: 

-- d M~ \ 0 0 0 

6;-"' 
- 0 -

0 -\ 0 

0 0 -l 0 

0 0 () 

M_-v 

where d 
by: 

is the inverse metric. The infinitesimal line element is derived from the metric 
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The metric in the Cartesian basis may be r{alted to the metric in any other basis by 

factorizing it into Cartan tetrads: 

In the complex circular basis { 1 - 10} the unit vectors are: ( { ~J 

!!___{,)" ~ (i--'i) ~b)~~ i_+t·~)~- I•) 
and the tetrad may be defined as: ( ) ) 

'\[ (o.) "- '\(; \[ )-- - ( l 0~ 

where V is any vector field. Considering fo rthe sake of illustration the transverse 

components, then: 

Le. 

The position vector in the Cartesian and complex circular bases is defined by: 

-

The complex conjugate of r is: 



--

and 

Therefore: 

From Eq. ( j6 g) it follows that: 

[ (C.) 
- (!) (d 

- ~I v) ( ("J) 
("J) (;~) 

\j, \1~ where: 

~ (;~ \ (l) - - ~ :l ~ J5: J 

\j (~) \ '\J ~) ~ ....... -
fl 1 

So 

- t 

X 

I 

JI') 

~ 

I 



QED. When the complex circular basis is multiplied by a phase, it describes circularly 

polarized radiation { 1 - 1 0}. 

From the basic definition: 

it follows that: 
• 
\ 

- - ) 

The infinitesimal of the line element is therefore: 

-

- -

(l~)) 

- (l:l) 
-(1~ 

U ~i_)._X+i_Jf 

and therefore for two dimensional sp~ the metric on thel5art~sian ;•]sis is. - ( \ )0 
dr.v D l 

In the complex circular basis: 



so: 

-
and the infinitesimal is: 

-
These results can be s . . ummanzed m matrix notation by: 

It follows that: 

dr., )u 0 - (lYJ.) 
-

and 

~(c.'{\,) ~ 
1(1)(1) 

b \ D -(\~ --

t 
. 

0 

The two metrics represent the same pl . . . ane m two different ways. They are related by: 



I.e. 

where the tetrad elements are given by Eq. (\\~)and the metric elements by Eqs. ( l3J ) 

and ( \)3 ). 

To introduce the idea of a dynamic Minkowski spacetime note carefully that Ecjs. 

( \~4-) to ( l )1, ) are still valid when a phase is incorporated, for example the phase ofa 

plane wave: r -=- wt- - \rc G - ( l~ 

where GJ is the angular frequency and Yc the magnitude of the wave vector. In this 

case { 1 - 1 0} : 

--
--so: 

and Eqs. ( t)~) to ( t )L ) ru:e still true. 

Therefore the dynamic Minkowski space is definable by the phase dependent 
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Cartan tetrads. The completed Minkowski metric ( lt~lr) is defined with the addition of: 

(o) . (:>) ( 
'\1 0 "' ~ !, = -L . - \4-~ 

In ECE theory the electromagnetic potential is: 

and the Cartan torsion of the dynamic Minkowski metric is: 0 ( L.) 
("~ \ Cc..' \ lo.) c}"J (!.") - w :){b)'\1 . 

\ ~ d ~ - d,.)~ t- r (to)~ ~ ~ 
r "' !" "' IJ- _ ( 1 4-l.t-) 
The tetrad postulate { 1 - 10} is: 

f\ (,._) \ (") (.,1 {t.) A fc.) = o 
YM ~ "' ,_ ~ ~ .... + w ,..l,.,J\f .., r)" .. "V ').. 
/ -(\'-t-S) 

which can be denoted by: ( 

d (c..) ~ r ( ... 1 -c./") ·.-=- y. 11.) 

r~N jA~ rN ~r~ 
- (\4b'\ 

The connection of the dynamic Minkowski spacetime may therefore be defmed 6y: 

- (l~t-:) 

. 1(J--\iZ) 
-~~ . 

J) _(\~) 

For example: 

- (\4-q) 
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When the angular frequency and wave vector go to zero the .Mink:owski metric 

becomes static and there is no connection or torsion. In the dynamic Mink:owski spacetime it 

is possible as shown to define both a connection and torsion, so the Cartan identity gives the 

field equations of gravitation and magnetogravitation. These concepts will be developed in 

future work. 

4. GRAPHICAL ANALYSIS OF THE ACCELERATION OF THE "SCHW ARZSCHILD" 

METRIC AND CRITICISM OF EGR. 

Section by Dr. Horst Eckardt 
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4 Graphical analysis of the acceleration of the

�Schwarzschild� metric and criticism of EGR

We compare the acceleration obtained from the so-called Schwarzschild metric
with the result of the Minkowski metric for a precessing ellipse. The line element
for a spherical symmetric spacetime was given by Eq.(52). The corresponding
orbit according to Eq.(58) is(

dr

dθ

)2

=
r4

B

(
1

Aa2
− 1

b2
− 1

r2

)
. (150)

For the Schwarzschild metric the parameter B is de�ned by

B =
1

r − r0
r

(151)

with so-called Schwarzschild radius r0. Inserting this into the de�nition of the
acceleration, Eq.(38),

a =

(
L

mr

)2 (
dr

dθ

d

dr

(
1

r2
dr

dθ

)
− 1

r

)
er (152)

leads to the intermediate result (99), which can greatly be simpli�ed by com-
puter algebra to result in

aS = −r0L
m2

1

r4
er. (153)

The constants A, a and b all cancel out. Compared to this equation, the
Minkowski space acceleration for a precessing ellipse is (see Eq.(100)):

aM = −
(
L

mr

)2 (
x2

α
+

1

r
(1− x2)

)
er. (154)
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Figure 1: Comparison of accelerations for orbits of Schwarzschild metric and
Minkowski ellipses with x=0.8, 1 and 1.2.

This is a function of 1/r2 and 1/r3 while the Schwarzschild acceleration is pro-
portional to 1/r4. Both accelerations are de�nitly di�erent. An example is
shown in Fig.1 with all constants set to unity. It is seen that the Schwarzschild
acceleration drops much more massively for small r than in the Minkowski cases.
Di�erent values of x lead variations of the curve. Even a repulsive behaviour
can arise for x > 1 as discussed for galaxies in earlier papers [1].

An additional aspect is the mass dependence of the acceleration. According
to the covariant force �eld concept, the acceleration is independent of the �probe
mass�. Multiplication with m gives the strength of the force �eld. This is ful-
�lled for the Minkowski acceleration because the mass m appearing in Eq.(154)
cancels out with the factor m contained in the angular momentum:

L = γmr2ωr, (155)

see Eq.(31). This does not hold for the acceleration of the Schwarzschild metric,
Eq.(153), where a factor of m remains in the denominator. So we arrive at the
paradoxical situation that the acceleration depends on the �probe mass�, showing
that EGR delivers an absurde result. This is another refutation of EGR.

2
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(%i14) a3: ev(a_e, [alpha=1, L=1, x=1.0]);

(%o14) -
1.0

r2

(%i15) a4: ev(a_e, [alpha=1, L=1, x=1.2]);

(%o15) -

1.44 -
0.44

r

r2

(%i21) wxplot2d([a1,a2,a3,a4], [r,0,4], [y,-10,3.2],
[legend, "Schwarzschild", "Minkowski ellipse, x=0.8 ", "Minkowski ellipse, x=1.0",
"Minkowski ellipse, x=1.2"],
[xlabel, "r"], [ylabel, "a"])$

plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
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(%i22) plot2d([a1,a2,a3,a4], [r,0,4], [y,-10,3.2],
[legend, "Schwarzschild", "Minkowski ellipse, x=0.8 ", "Minkowski ellipse, x=1.0",
"Minkowski ellipse, x=1.2"],
[xlabel, "r"], [ylabel, "a"],
[gnuplot_term, "png linewidth 3 font 'Arial' 14 siz e 800,600"],
[gnuplot_out_file, "D:/Doc/Artikel-Eck/ECE-Theorie/ paper234/Fig1.png"]);

plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
plot2d: expression evaluates to non-numeric value s omewhere in plotting range.
plot2d: some values were clipped.
(%o22) D:/Doc/Artikel-Eck/ECE-Theorie/paper234/Fig1.png
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